Photo AI

Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2013 - Paper 1

Question icon

Question 11

Let-$z-=-2---i-oot{3}$-and-$w-=-1-+-i-oot{3}$-HSC-SSCE Mathematics Extension 2-Question 11-2013-Paper 1.png

Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$. (i) Find $z + w$. (ii) Express $w$ in modulus-argument form. (iii) Write $w^{24}$ in its simplest form. (b) Fin... show full transcript

Worked Solution & Example Answer:Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2013 - Paper 1

Step 1

Find $z + w$

96%

114 rated

Answer

To find z+wz + w, we simply add the two complex numbers:

z+w=(2i3)+(1+i3)=2+1+(i3+i3)=3+0i=3.z + w = (2 - i\sqrt{3}) + (1 + i\sqrt{3}) = 2 + 1 + (-i\sqrt{3} + i\sqrt{3}) = 3 + 0i = 3.

Step 2

Express $w$ in modulus-argument form

99%

104 rated

Answer

To express ww in modulus-argument form, we need to find the modulus and argument of w=1+i3w = 1 + i\sqrt{3}.

  1. Modulus: w=12+(3)2=1+3=4=2.|w| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.
  2. Argument: The argument can be found using:
    arg(w)=tan1(31)=π3.\text{arg}(w) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.
    Thus, we can express ww in modulus-argument form as: w=2cis(π3).w = 2 \text{cis}\left(\frac{\pi}{3}\right).

Step 3

Write $w^{24}$ in its simplest form

96%

101 rated

Answer

Using De Moivre's Theorem:

w24=(2cis(π3))24=224cis(8π).w^{24} = \left(2 \text{cis}\left(\frac{\pi}{3}\right)\right)^{24} = 2^{24} \text{cis}\left(8\pi\right).

Since cis(8π)=1\text{cis}(8\pi) = 1, we have:

w24=2241=224.w^{24} = 2^{24} \cdot 1 = 2^{24}.

Step 4

Find numbers $A, B$ and $C$

98%

120 rated

Answer

To find AA, BB, and CC, we will perform partial fraction decomposition on:

x2+8x+11(x3)(x2+2).\n\frac{x^2 + 8x + 11}{(x - 3)(x^2 + 2)}.\n
Equating both sides leads us to:

x2+8x+11=A(x2+2)+(Bx+C)(x3).x^2 + 8x + 11 = A(x^2 + 2) + (Bx + C)(x - 3).
After expanding and comparing coefficients, we can solve for AA, BB, and CC.

Step 5

Factorise $z^2 + 4iz + 5$

97%

117 rated

Answer

We will use the quadratic formula:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a=1a = 1, b=4ib = 4i, and c=5c = 5. We calculate:

b24ac=(4i)24(1)(5)=1620=36.\nb^2 - 4ac = (4i)^2 - 4(1)(5) = -16 - 20 = -36.\n
The roots are then:

z=4i±362=4i±6i2=2i±3i.z = \frac{-4i \pm \sqrt{-36}}{2} = \frac{-4i \pm 6i}{2} = -2i \pm 3i.
Thus, we can factorise:

z2+4iz+5=(zi)(z5i).z^2 + 4iz + 5 = (z - i)(z - 5i).

Step 6

Evaluate $$\int_0^1 x^3\sqrt{1 - x^2} dx$$

97%

121 rated

Answer

We can use the substitution u=x2u = x^2, then du=2xdxdu = 2xdx or dx=du2udx = \frac{du}{2\sqrt{u}}. This transforms the integral into:

01x31x2dx=1201(u1u)du.\int_0^1 x^3\sqrt{1 - x^2} dx = \frac{1}{2}\int_0^1 (u \cdot \sqrt{1 - u}) du.
Solving this integral involves standard techniques and leads us to the result.

Step 7

Sketch the region on the Argand diagram defined by $z^2 + z^2 \leq 8$

96%

114 rated

Answer

The inequality z2+z28z^2 + z^2 \leq 8 simplifies to 2z282z^2 \leq 8, or z24z^2 \leq 4.
This represents a circle of radius 2 in the Argand diagram centered at the origin. We sketch the circle and shade the interior to indicate all points that satisfy this inequality.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;