Photo AI

Question 11 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Question icon

Question 11

Question-11-(15-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 11-2016-Paper 1.png

Question 11 (15 marks) Use a SEPARATE writing booklet. (a) Let $z = \sqrt{3} - i$. (i) Express $z$ in modulus-argument form. (ii) Show that $z^6$ is real. (iii) ... show full transcript

Worked Solution & Example Answer:Question 11 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Step 1

Express $z$ in modulus-argument form.

96%

114 rated

Answer

To express zz in modulus-argument form, we first calculate the modulus: z=(3)2+(1)2=3+1=4=2.|z| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.
Next, we find the argument: Arg(z)=tan1(13)=π6.\text{Arg}(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}.
Using these, we can express zz as: z=2(cos(π6)+isin(π6)).z = 2 \left(\cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right)\right).

Step 2

Show that $z^6$ is real.

99%

104 rated

Answer

To show that z6z^6 is real, we compute:

So, $z^6$ is real.

Step 3

Find a positive integer $n$ such that $z^n$ is purely imaginary.

96%

101 rated

Answer

For znz^n to be purely imaginary, the cosine part must equal zero. This occurs when: π6n=π2+kπ(kZ).-\frac{\pi}{6} \cdot n = -\frac{\pi}{2} + k\pi \, (k \in \mathbb{Z}).
Solving for nn, we find: n=3+6k.n = 3 + 6k.
Choosing the smallest positive integer, we set k=0k = 0, yielding n=3n = 3.

Step 4

Find $\int xe^{-2x} \: dx$.

98%

120 rated

Answer

To solve the integral, we employ integration by parts where we let:

  • u=xu = x and dv=e2xdxdv = e^{-2x} dx. Then, we differentiate and integrate to find:
  • du=dxdu = dx and v=12e2x.v = -\frac{1}{2} e^{-2x}. Now applying the integration by parts formula: udv=uvvdu,\int u \, dv = uv - \int v \, du,
    we obtain: xe2xdx=12xe2x12e2xdx=12xe2x+14e2x+C.\int xe^{-2x} dx = -\frac{1}{2}xe^{-2x} - \int -\frac{1}{2} e^{-2x} dx = -\frac{1}{2}xe^{-2x} + \frac{1}{4}e^{-2x} + C.

Step 5

Find $\frac{dy}{dx}$ for the curve given by $x^3 + y^3 = 2xy$, leaving your answer in terms of $x$ and $y$.

97%

117 rated

Answer

To differentiate the equation implicitly with respect to xx: ddx(x3)+ddx(y3)=ddx(2xy).\frac{d}{dx}(x^3) + \frac{d}{dx}(y^3) = \frac{d}{dx}(2xy).
Applying the chain rule and product rule yields: 3x2+3y2dydx=2(y+xdydx).3x^2 + 3y^2 \frac{dy}{dx} = 2\left(y + x \frac{dy}{dx}\right).
Rearranging terms leads to: 3y2dydx2xdydx=2y3x2.3y^2 \frac{dy}{dx} - 2x \frac{dy}{dx} = 2y - 3x^2.
Factoring out dydx\frac{dy}{dx} gives: dydx(3y22x)=2y3x2.\frac{dy}{dx}(3y^2 - 2x) = 2y - 3x^2.
Thus, dydx=2y3x23y22x.\frac{dy}{dx} = \frac{2y - 3x^2}{3y^2 - 2x}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;