To express zw in the form a+ib, we start by dividing the complex numbers:
zw=3+4i2−3i.
Multiply the numerator and denominator by the conjugate of the denominator:
(3+4i)(3−4i)(2−3i)(3−4i).
Calculating the denominator:
(3+4i)(3−4i)=9+16=25.
Now for the numerator:
(2⋅3+2⋅(−4i)−3i⋅3−3i⋅(−4i))=(6+12)+(−8−9)i=18−17i.
Thus,
zw=2518−17i=2518−2517i.