Photo AI

Which of the following is a true statement about the lines $$oldsymbol{ ext{l}_1 = egin{pmatrix} -1 \ 2 \ 5 \\ \lambda \begin{pmatrix} 3 \ 1 \ -1 \\ \\ \end{pmatrix} \\ ext{and} \\ ext{l}_2 = egin{pmatrix} 3 \ -10 \ 1 \\ \mu\begin{pmatrix} -3 \ 1 \ -1 \\ \\ \end{pmatrix}}$$? - HSC - SSCE Mathematics Extension 2 - Question 5 - 2023 - Paper 1

Question icon

Question 5

Which-of-the-following-is-a-true-statement-about-the-lines--$$oldsymbol{-ext{l}_1-=-egin{pmatrix}--1-\-2-\-5-\\-\lambda-\begin{pmatrix}-3-\-1-\--1-\\-\\-\end{pmatrix}-\\--ext{and}-\\--ext{l}_2-=-egin{pmatrix}-3-\--10-\-1-\\-\mu\begin{pmatrix}--3-\-1-\--1-\\-\\-\end{pmatrix}}$$?-HSC-SSCE Mathematics Extension 2-Question 5-2023-Paper 1.png

Which of the following is a true statement about the lines $$oldsymbol{ ext{l}_1 = egin{pmatrix} -1 \ 2 \ 5 \\ \lambda \begin{pmatrix} 3 \ 1 \ -1 \\ \\ \end{pmatr... show full transcript

Worked Solution & Example Answer:Which of the following is a true statement about the lines $$oldsymbol{ ext{l}_1 = egin{pmatrix} -1 \ 2 \ 5 \\ \lambda \begin{pmatrix} 3 \ 1 \ -1 \\ \\ \end{pmatrix} \\ ext{and} \\ ext{l}_2 = egin{pmatrix} 3 \ -10 \ 1 \\ \mu\begin{pmatrix} -3 \ 1 \ -1 \\ \\ \end{pmatrix}}$$? - HSC - SSCE Mathematics Extension 2 - Question 5 - 2023 - Paper 1

Step 1

Determine Direction Vectors

96%

114 rated

Answer

For line extl1 ext{l}_1, the direction vector is given by egin{pmatrix} 3 \ 1 \ -1 \\ \end{pmatrix}, and for line extl2 ext{l}_2, the direction vector is egin{pmatrix} -3 \ 1 \ -1 \\ \end{pmatrix}.

Step 2

Find Condition for Parallelism

99%

104 rated

Answer

Two lines are parallel if their direction vectors are scalar multiples of each other. In this case, we can note:

eq k egin{pmatrix} -3 \ 1 \ -1 \\ \end{pmatrix}$$ for any scalar $k$. Thus, the lines are not parallel.

Step 3

Find Condition for Intersection

96%

101 rated

Answer

To check if the lines intersect, we can write:

egin{pmatrix} -1 \ 2 \ 5 \\ \end{pmatrix} + ext{l} egin{pmatrix} 3 \ 1 \ -1 \\ \end{pmatrix} = egin{pmatrix} 3 \ -10 \ 1 \\ \end{pmatrix} + ext{m} egin{pmatrix} -3 \ 1 \ -1 \\ \end{pmatrix}. Solving this system shows that extl ext{l} and extm ext{m} can take values such that solutions exist, indicating the lines do intersect.

Step 4

Conclusion

98%

120 rated

Answer

Since the lines are not parallel and they do intersect, the correct statement is:

A. extl1 ext{l}_1 and extl2 ext{l}_2 are the same line.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;