Photo AI

Which of the following vectors is perpendicular to $3 extbf{i} + 2 extbf{j} - 5 extbf{k}$? A - HSC - SSCE Mathematics Extension 2 - Question 1 - 2024 - Paper 1

Question icon

Question 1

Which-of-the-following-vectors-is-perpendicular-to-$3-extbf{i}-+-2-extbf{j}---5-extbf{k}$?--A-HSC-SSCE Mathematics Extension 2-Question 1-2024-Paper 1.png

Which of the following vectors is perpendicular to $3 extbf{i} + 2 extbf{j} - 5 extbf{k}$? A. $- extbf{i} - extbf{j} + extbf{k}$ B. $ extbf{i} + extbf{j} - ext... show full transcript

Worked Solution & Example Answer:Which of the following vectors is perpendicular to $3 extbf{i} + 2 extbf{j} - 5 extbf{k}$? A - HSC - SSCE Mathematics Extension 2 - Question 1 - 2024 - Paper 1

Step 1

Identify the Given Vector

96%

114 rated

Answer

The given vector is 3extbfi+2extbfj5extbfk3 extbf{i} + 2 extbf{j} - 5 extbf{k}.

Step 2

Understanding Perpendicular Vectors

99%

104 rated

Answer

Two vectors are perpendicular if their dot product is zero. If we have two vectors extbfa=a1extbfi+a2extbfj+a3extbfk extbf{a} = a_1 extbf{i} + a_2 extbf{j} + a_3 extbf{k} and extbfb=b1extbfi+b2extbfj+b3extbfk extbf{b} = b_1 extbf{i} + b_2 extbf{j} + b_3 extbf{k}, then the dot product is given by: extbf{a} ullet extbf{b} = a_1b_1 + a_2b_2 + a_3b_3

To find a vector that is perpendicular to 3extbfi+2extbfj5extbfk3 extbf{i} + 2 extbf{j} - 5 extbf{k}, we can check each option.

Step 3

Check Option A: $- extbf{i} - extbf{j} + extbf{k}$

96%

101 rated

Answer

Calculate the dot product:

& = -3 - 2 - 5 \\ & = -10 \\ ext{(Not perpendicular)} ext{.} \\ \\ \\ \\ \\$

Step 4

Check Option B: $ extbf{i} + extbf{j} - extbf{k}$

98%

120 rated

Answer

Calculate the dot product:

& = 3 + 2 + 5 \\ & = 10 \\ ext{(Not perpendicular)} ext{.} \\ \\ \\$

Step 5

Check Option C: $-2 extbf{i} + 3 extbf{j} + extbf{k}$

97%

117 rated

Answer

Calculate the dot product:

& = -6 + 6 - 5 \\ & = -5 \\ ext{(Not perpendicular)} ext{.} \\$

Step 6

Check Option D: $3 extbf{i} - 2 extbf{j} + extbf{k}$

97%

121 rated

Answer

Calculate the dot product:

& = 9 - 4 - 5 \\ & = 0 \\ ext{(Perpendicular)} ext{.} \\$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;