Photo AI

Find $$\int \frac{x^2}{(5+x^2)^2} \;dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1} x \;dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$ It can be shown that $$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2} - \frac{2x}{2-x^2}.$$ (Do NOT prove this.) Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \;dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Question icon

Question 1

Find--$$\int-\frac{x^2}{(5+x^2)^2}-\;dx.$$---Find--$$\int-\frac{dx}{\sqrt{4x^2+1}}.$$---Evaluate--$$\int_0^1-\tan^{-1}-x-\;dx.$$---Evaluate--$$\int_2^2-\frac{dx}{\sqrt{2x-1}}.$$---It-can-be-shown-that---$$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)}-=-\frac{4-2x}{2-2x+x^2}---\frac{2x}{2-x^2}.$$---(Do-NOT-prove-this.)---Use-this-result-to-evaluate--$$\int_0^1-\frac{8(1-x)}{(2-x^2)(2-2x+x^2)}-\;dx.$$-HSC-SSCE Mathematics Extension 2-Question 1-2008-Paper 1.png

Find $$\int \frac{x^2}{(5+x^2)^2} \;dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1} x \;dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sq... show full transcript

Worked Solution & Example Answer:Find $$\int \frac{x^2}{(5+x^2)^2} \;dx.$$ Find $$\int \frac{dx}{\sqrt{4x^2+1}}.$$ Evaluate $$\int_0^1 \tan^{-1} x \;dx.$$ Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}.$$ It can be shown that $$\frac{8(1-x)}{(2-x^2)(2-2x+x^2)} = \frac{4-2x}{2-2x+x^2} - \frac{2x}{2-x^2}.$$ (Do NOT prove this.) Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \;dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Step 1

Find $$\int \frac{x^2}{(5+x^2)^2} \;dx$$.

96%

114 rated

Answer

To solve this integral, we can use the substitution method. Let ( u = 5 + x^2 ). Then, ( du = 2x ;dx ) or ( dx = \frac{du}{2x} ). The integral becomes:

x2u2du2x=12xu2  du\int \frac{x^2}{u^2} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{x}{u^2} \;du

Note that ( x = \sqrt{u-5} ). Thus, we change the variable completely:

12u5u2  du\frac{1}{2} \int \frac{\sqrt{u-5}}{u^2} \;du

Now we can simplify and integrate. The answer will be in terms of ( u ) which we will convert back to ( x ) at the end.

Step 2

Find $$\int \frac{dx}{\sqrt{4x^2+1}}$$.

99%

104 rated

Answer

For this integral, we can use a trigonometric substitution. Let ( x = \frac{1}{2} \tan \theta ). Then, ( dx = \frac{1}{2} \sec^2 \theta , d\theta ) and we find:

12sec2θ4(14tan2θ+1)  dθ=12sec2θsec2θ  dθ=12  dθ\int \frac{\frac{1}{2} \sec^2 \theta}{\sqrt{4(\frac{1}{4}\tan^2 \theta + 1)}} \;d\theta = \int \frac{\frac{1}{2} \sec^2 \theta}{\sqrt{\sec^2 \theta}} \;d\theta = \int \frac{1}{2} \;d\theta

The integral simplifies to ( \frac{1}{2} \theta + C = \frac{1}{2} \tan^{-1}(2x) + C).

Step 3

Evaluate $$\int_0^1 \tan^{-1} x \;dx$$.

96%

101 rated

Answer

To evaluate this integral, we can use integration by parts. Let ( u = \tan^{-1} x ) and ( dv = dx ). Then, we have:

du=11+x2  dxdu = \frac{1}{1+x^2} \;dx v=xv = x

Thus,

tan1x  dx=xtan1xx1+x2  dx\int \tan^{-1} x \;dx = x \tan^{-1} x - \int \frac{x}{1+x^2} \;dx

To evaluate ( \int \frac{x}{1+x^2} ;dx), use the substitution ( w = 1 + x^2 ):

x1+x2  dx=12ln(1+x2)+C\int \frac{x}{1+x^2} \;dx = \frac{1}{2}\ln(1+x^2) + C

Substituting back, we find:

Evaluate from 0 to 1 to find the definite integral value.

Step 4

Evaluate $$\int_2^2 \frac{dx}{\sqrt{2x-1}}$$.

98%

120 rated

Answer

Evaluate this definite integral, first observe that if the upper limit equals the lower limit (2), the result will be 0. Therefore:

22dx2x1=0\int_2^2 \frac{dx}{\sqrt{2x-1}} = 0.

Step 5

Use this result to evaluate $$\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \;dx$$.

97%

117 rated

Answer

We start by substituting the known identity:

The integral simplifies to:

018(1x)(2x2)(22x+x2)  dx\int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \;dx,

which requires using the previous evaluation results.

Evaluate it accordingly to find the final specific value.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;