Photo AI

Use the Question 12 Writing Booklet (a) The vector $ extbf{a}$ is $$egin{pmatrix} 1 \ 2 \ 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\end{pmatrix}$$ and the vector $ extbf{b}$ is $$egin{pmatrix} 2 \ 0 \ -4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{pmatrix}$$ (i) Find \( \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} \) - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Question icon

Question 12

Use-the-Question-12-Writing-Booklet--(a)-The-vector-$-extbf{a}$-is--$$egin{pmatrix}-1-\-2-\-3-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\end{pmatrix}$$----and-the-vector-$-extbf{b}$-is--$$egin{pmatrix}-2-\-0-\--4-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\end{pmatrix}$$--(i)-Find-\(-\frac{\textbf{a}-\cdot-\textbf{b}}{\textbf{b}-\cdot-\textbf{b}}-\textbf{b}-\)-HSC-SSCE Mathematics Extension 2-Question 12-2024-Paper 1.png

Use the Question 12 Writing Booklet (a) The vector $ extbf{a}$ is $$egin{pmatrix} 1 \ 2 \ 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\end{pmatrix}$$ and the vec... show full transcript

Worked Solution & Example Answer:Use the Question 12 Writing Booklet (a) The vector $ extbf{a}$ is $$egin{pmatrix} 1 \ 2 \ 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\end{pmatrix}$$ and the vector $ extbf{b}$ is $$egin{pmatrix} 2 \ 0 \ -4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{pmatrix}$$ (i) Find \( \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} \) - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Step 1

Find \( \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} \)

96%

114 rated

Answer

First, calculate ( \textbf{a} \cdot \textbf{b} ):

ab=12+20+3(4)=2+012=10\textbf{a} \cdot \textbf{b} = 1 \cdot 2 + 2 \cdot 0 + 3 \cdot (-4) = 2 + 0 - 12 = -10

Next, compute ( \textbf{b} \cdot \textbf{b} ):

bb=22+02+(4)2=4+0+16=20\textbf{b} \cdot \textbf{b} = 2^2 + 0^2 + (-4)^2 = 4 + 0 + 16 = 20

Now, find the quantity:

abbb=1020=12\frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} = \frac{-10}{20} = -\frac{1}{2}

Thus,

abbbb=12(2 0 4)=(1 0 2).\frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} = -\frac{1}{2} \begin{pmatrix} 2 \ 0 \ -4 \end{pmatrix} = \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix}.

Step 2

Show that \( \textbf{a} - \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} \) is perpendicular to \( \textbf{b} \)

99%

104 rated

Answer

To show this, calculate:

aabbbb=(1 2 3)(1 0 2)=(1(1) 20 32)=(2 2 1).\textbf{a} - \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} - \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix} = \begin{pmatrix} 1 - (-1) \ 2 - 0 \ 3 - 2 \end{pmatrix} = \begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix}.

Now, calculate the dot product with ( \textbf{b} ):

(2 2 1)(2 0 4)=22+20+1(4)=44=0.\begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \ 0 \ -4 \end{pmatrix} = 2 \cdot 2 + 2 \cdot 0 + 1 \cdot (-4) = 4 - 4 = 0.

Since the dot product is zero, this implies that ( \textbf{a} - \frac{\textbf{a} \cdot \textbf{b}}{\textbf{b} \cdot \textbf{b}} \textbf{b} ) is perpendicular to ( \textbf{b} ).

Step 3

Use partial fractions to find \( \int \frac{3x^2 + 2x + 1}{(x-1)(x^2 + 1)} dx \)

96%

101 rated

Answer

We start with a partial fractions assumption:

3x2+2x+1(x1)(x2+1)=Ax1+Bx+Cx2+1\frac{3x^2 + 2x + 1}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}

Multiply through by ( (x-1)(x^2 + 1) ) to clear the denominators:

3x2+2x+1=A(x2+1)+(Bx+C)(x1).3x^2 + 2x + 1 = A(x^2 + 1) + (Bx + C)(x - 1).

Expanding both sides, we get:

3x2+2x+1=Ax2+A+Bx2Bx+CxC.3x^2 + 2x + 1 = Ax^2 + A + Bx^2 - Bx + Cx - C.

Combining like terms yields:

3x2+2x+1=(A+B)x2+(CB)x+(AC).3x^2 + 2x + 1 = (A + B)x^2 + (C - B)x + (A - C).

Matching coefficients gives us:

  • For ( x^2 ): ( A + B = 3 )
  • For ( x ): ( C - B = 2 )
  • Constant: ( A - C = 1 )

From the second equation: ( C = B + 2 ).

Substituting into the first, we have:

( A + (B + 2) = 3 \Rightarrow A + B = 1 \Rightarrow A = 1 - B ).

Substituting ( A ) in the third equation gives:

( (1 - B) - (B + 2) = 1 \Rightarrow 1 - B - B - 2 = 1 \Rightarrow 1 - 2B - 2 = 1 \Rightarrow -2B = 2 \Rightarrow B = -1 ).

Then, ( C = -1 + 2 = 1 ).

And finally, substituting ( B ) into the first gives:

( A + (-1) = 3 \Rightarrow A = 4. )

Now we have ( A = 4, B = -1, C = 1 ). Thus:

4x1+x+1x2+1dx.\int \frac{4}{x-1} + \frac{-x + 1}{x^2 + 1} dx.

Integrating term by term gives:

4lnx112ln(x2+1)+tan1(x)+C.4 \ln |x - 1| - \frac{1}{2} \ln(x^2 + 1) + \tan^{-1}(x) + C.

Step 4

Explain why \( b = -12 \)

98%

120 rated

Answer

From the equation (|z|^2 = z + 8 + 12i), we know:

z2=a+bi2=a2+b2.|z|^2 = |a + bi|^2 = a^2 + b^2.

Thus, the left-hand side equals:

z2=z+8+12i=(a+bi)+8+12i=(a+8)+(b+12)i.|z|^2 = z + 8 + 12i = (a + bi) + 8 + 12i = (a + 8) + (b + 12)i.

This means the imaginary part must be zero, so:

b+12=0b=12.b + 12 = 0 \Rightarrow b = -12.

This confirms that ( b = -12 ).

Step 5

Hence, or otherwise, find \( z \)

97%

117 rated

Answer

Substituting ( b = -12 ) into the equation:

(|z|^2 = a^2 + (-12)^2 = a^2 + 144),

and from the condition, we can set:

\sqrt{a^2 + 144} = a + 8 - 12i,$$$$ { ext{since }}\sqrt{12^2 + 8^2} = |8 + 12i|.

To solve for ( z ), we square both sides:

a2+144=(a+8)2+144a2+144=a2+16a+64+1440=16a+64a=4.a^2 + 144 = (a + 8)^2 + 144 \Rightarrow a^2 + 144 = a^2 + 16a + 64 + 144 \Rightarrow 0 = 16a + 64 \Rightarrow a = -4.

Thus, we have:

z=a+bi=412i.z = a + bi = -4 - 12i.

Therefore, ( z = -4 - 12i ).

Step 6

Explain why there is no integer \( n \) such that \( (n + 1)^4 - 79n^4 = 2 \)

97%

121 rated

Answer

Consider the equation:

(n+1)479n4=2.(n + 1)^4 - 79n^4 = 2.

Expanding ( (n + 1)^4 ):

(n+1)4=n4+4n3+6n2+4n+1. (n+1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1.

Substituting gives:

n4+4n3+6n2+4n+179n4=2.n^4 + 4n^3 + 6n^2 + 4n + 1 - 79n^4 = 2.

Rearranging effectively results in:

Notice that this polynomial is dominated by the \( -78n^4 \) term for large \( n \), indicating that: * If \( n \) is large, it will be negative. * If \( n \) is small, checking integer values will also yield negative values. Since the left side cannot equal 2 for any integer \( n \), we conclude that there is no integer \( n \) such that \( (n + 1)^4 - 79n^4 = 2 \).

Step 7

Find a vector equation of the line \( \ell \)

96%

114 rated

Answer

The vector equation of a line through points ( A(3, 5, -4) ) and ( B(7, 0, 2) ) can be expressed as:

  1. Find the direction vector ( \textbf{d} = \textbf{B} - \textbf{A} = \begin{pmatrix} 7 - 3 \ 0 - 5 \ 2 - (-4) \end{pmatrix} = \begin{pmatrix} 4 \ -5 \ 6 \end{pmatrix} )

Thus, the line ( \ell ) can be represented in vector form as: (x y z)=(3 5 4)+λ(4 5 6)\begin{pmatrix} x \ y \ z \end{pmatrix} = \begin{pmatrix} 3 \ 5 \ -4 \end{pmatrix} + \lambda \begin{pmatrix} 4 \ -5 \ 6 \end{pmatrix}, where ( \lambda \in \mathbb{R} ).

Step 8

Determine, giving reasons, whether the point \( C(10, 5, -2) \) lies on the line \( \ell \)

99%

104 rated

Answer

To determine whether ( C(10, 5, -2) ) lies on the line ( \ell ), we must check if there exists a value of ( \lambda ) such that:

(10 5 2)=(3 5 4)+λ(4 5 6)\begin{pmatrix} 10 \ 5 \ -2 \end{pmatrix} = \begin{pmatrix} 3 \ 5 \ -4 \end{pmatrix} + \lambda \begin{pmatrix} 4 \ -5 \ 6 \end{pmatrix}.

This gives us the following equations:

  1. ( 10 = 3 + 4\lambda ) \Rightarrow ( \lambda = \frac{7}{4} ),
  2. ( 5 = 5 - 5\lambda ) \Rightarrow ( 0 = -5\lambda ) so ( \lambda = 0 ),
  3. ( -2 = -4 + 6\lambda ) \Rightarrow ( 6\lambda = 2 ) \Rightarrow ( \lambda = \frac{1}{3} ).

As we can see, there are inconsistent values for ( \lambda ). Thus, point ( C(10, 5, -2) ) does not lie on the line ( \ell ).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;