Photo AI

The complex numbers $ z = 2 e^{i \frac{\pi}{2}} $ and $ w = 6 e^{i \frac{\pi}{6}} $ are given - HSC - SSCE Mathematics Extension 2 - Question 11 - 2021 - Paper 1

Question icon

Question 11

The-complex-numbers-$-z-=-2-e^{i-\frac{\pi}{2}}-$-and-$-w-=-6-e^{i-\frac{\pi}{6}}-$-are-given-HSC-SSCE Mathematics Extension 2-Question 11-2021-Paper 1.png

The complex numbers $ z = 2 e^{i \frac{\pi}{2}} $ and $ w = 6 e^{i \frac{\pi}{6}} $ are given. Find the value of $ 2zw $, giving the answer in the form $ re^{i\thet... show full transcript

Worked Solution & Example Answer:The complex numbers $ z = 2 e^{i \frac{\pi}{2}} $ and $ w = 6 e^{i \frac{\pi}{6}} $ are given - HSC - SSCE Mathematics Extension 2 - Question 11 - 2021 - Paper 1

Step 1

Find the value of $ 2zw $

96%

114 rated

Answer

To find 2zw2zw, first calculate:

z=2eiπ2=2iz = 2 e^{i \frac{\pi}{2}} = 2i w=6eiπ6=6(cosπ6+isinπ6)=6(32+i12)=33+3iw = 6 e^{i \frac{\pi}{6}} = 6 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = 6 \left( \frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = 3\sqrt{3} + 3i

Now, multiply:

zw=(2i)(33+3i)=63i6=6+63izw = (2i)(3\sqrt{3} + 3i) = 6\sqrt{3}i - 6 = -6 + 6\sqrt{3}i

Then,

2zw=2(6+63i)=12+123i2zw = 2(-6 + 6\sqrt{3}i) = -12 + 12\sqrt{3}i

To express in the form reiθre^{i\theta}, we find:

r=2zw=(12)2+(123)2=144+432=576=24r = |2zw| = \sqrt{(-12)^{2} + (12\sqrt{3})^{2}} = \sqrt{144 + 432} = \sqrt{576} = 24

Next, find θ\theta:

θ=tan1(12312)=tan1(3)=2π3\theta = \tan^{-1}\left( \frac{12\sqrt{3}}{-12} \right) = \tan^{-1}\left( -\sqrt{3} \right) = \frac{2\pi}{3}

Thus, the final result is:

2zw=24ei2π32zw = 24 e^{i\frac{2\pi}{3}}

Step 2

Find $ \sum_{n=1}^{5} (i)^{n} $

99%

104 rated

Answer

To compute the sum:

n=15(i)n=i+i2+i3+i4+i5\sum_{n=1}^{5} (i)^{n} = i + i^{2} + i^{3} + i^{4} + i^{5}

Using the powers of ii:

  • i1=ii^{1} = i
  • i2=1i^{2} = -1
  • i3=ii^{3} = -i
  • i4=1i^{4} = 1
  • i5=ii^{5} = i

Then, summing:

=i1i+1+i=i+(1+1)=i= i - 1 - i + 1 + i = i + (-1 + 1) = i

So, the result is:

n=15(i)n=i\sum_{n=1}^{5} (i)^{n} = i

Step 3

Find the angle between the vectors $ \mathbf{q} $ and $ \mathbf{b} $

96%

101 rated

Answer

To find the angle θ\theta between the vectors q=(24)\mathbf{q} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} and b=(31)\mathbf{b} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}:

  1. Calculate the dot product: qb=2(3)+4(1)=6+4=2\mathbf{q} \cdot \mathbf{b} = 2(-3) + 4(1) = -6 + 4 = -2

  2. Find the magnitudes:

    • For q\mathbf{q}: q=22+42=4+16=20=25|\mathbf{q}| = \sqrt{2^{2} + 4^{2}} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}
    • For b\mathbf{b}: b=(3)2+12=9+1=10|\mathbf{b}| = \sqrt{(-3)^{2} + 1^{2}} = \sqrt{9 + 1} = \sqrt{10}
  3. Use the dot product formula: cosθ=qbqb=2(25)(10)=2250=150=152\cos \theta = \frac{\mathbf{q} \cdot \mathbf{b}}{|\mathbf{q}| |\mathbf{b}|} = \frac{-2}{(2\sqrt{5})(\sqrt{10})} = \frac{-2}{2\sqrt{50}} = \frac{-1}{\sqrt{50}} = -\frac{1}{5\sqrt{2}}

  4. Calculate θ\theta: θ=cos1(152)118.1\theta = \cos^{-1}\left( -\frac{1}{5\sqrt{2}} \right) \approx 118.1^{\circ}

Thus, the angle is approximately:

θ118.1\theta \approx 118.1^{\circ}

Step 4

Find the two square roots of $ -i $

98%

120 rated

Answer

Let z=x+iyz = x + iy, where xx and yy are real numbers. We need to find:

z2=iz^{2} = -i

Expanding gives:

(x+iy)2=x2+2xyiy2=i(x + iy)^{2} = x^{2} + 2xy i - y^{2} = -i

From this, separate real and imaginary parts:

  1. Real part: x2y2=0x^{2} - y^{2} = 0 This implies x2=y2y=±xx^{2} = y^{2} \Rightarrow y = \pm x
  2. Imaginary part: 2xy=1xy=122xy = -1 \Rightarrow xy = -\frac{1}{2}

Substituting y=xy = x gives: x2=12x^{2} = -\frac{1}{2} which has no real solutions. Using y=xy = -x we have: x2=12x2=12x=±12,y=12-x^{2} = -\frac{1}{2} \Rightarrow x^2 = \frac{1}{2} \Rightarrow x = \pm \frac{1}{\sqrt{2}}, y = \mp \frac{1}{\sqrt{2}}

Thus, the square roots are:

i=1212iextand12+12i\sqrt{-i} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i ext{ and } -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i.

Step 5

Solve $ z^{2} + 2z + 1 + i = 0 $

97%

117 rated

Answer

From part (i), we have:

  1. Let z2+2z+(1+i)=0z^{2} + 2z + (1 + i) = 0
  2. Use the quadratic formula:

z=b±b24ac2a=2±(2)24(1)(1+i)2(1)z = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-2 \pm \sqrt{(2)^{2} - 4(1)(1+i)}}{2(1)}

Computing the discriminant: b24ac=44(1+i)=444i=4ib^{2} - 4ac = 4 - 4(1 + i) = 4 - 4 - 4i = -4i

So, we have: z=2±4i2=1±4ei(π2)2z = \frac{-2 \pm \sqrt{-4i}}{2} = -1 \pm \frac{\sqrt{4} \cdot e^{i(\frac{\pi}{2})}}{2}

Thus: z=1±(1ei(π6))=1+ei(π6)extand1ei(π6).z = -1 \pm (1 \cdot e^{i(\frac{\pi}{6})}) = -1 + e^{i(\frac{\pi}{6})} ext{ and } -1 - e^{i(\frac{\pi}{6})}.

Step 6

Find $ \frac{z}{w} $ in Cartesian form

97%

121 rated

Answer

Given: z=5+iextandw=24iz = 5 + i ext{ and } w = 2 - 4i

Calculate: zw=5+i24i\frac{z}{w} = \frac{5 + i}{2 - 4i}

Multiply by the conjugate of the denominator: (5+i)(2+4i)(24i)(2+4i)=10+20i+2i44+16=6+22i20=310+1110i\frac{(5 + i)(2 + 4i)}{(2 - 4i)(2 + 4i)} = \frac{10 + 20i + 2i - 4}{4 + 16} = \frac{6 + 22i}{20} = \frac{3}{10} + \frac{11}{10}i

Thus, the result in Cartesian form is:

zw=310+1110i\frac{z}{w} = \frac{3}{10} + \frac{11}{10}i

Step 7

Express $ \frac{3x^{2} - 5}{(x - 2)(x^{2} + x + 1)} $

96%

114 rated

Answer

Let: 3x25(x2)(x2+x+1)=Ax2+Bx+Cx2+x+1\frac{3x^{2} - 5}{(x - 2)(x^{2} + x + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^{2} + x + 1}

Multiply through by the common denominator: 3x25=A(x2+x+1)+(Bx+C)(x2)3x^{2} - 5 = A(x^{2} + x + 1) + (Bx + C)(x - 2)

Expanding the right hand side: 3x25=Ax2+Ax+A+Bx22Bx+Cx2C3x^{2} - 5 = Ax^{2} + Ax + A + Bx^{2} - 2Bx + Cx - 2C

Combine like terms: (A+B)x2+(A2B+C)x+(A2C)(A + B)x^{2} + (A - 2B + C)x + (A - 2C)

Set coefficients equal:

  1. A+B=3A + B = 3
  2. A2B+C=0A - 2B + C = 0
  3. A2C=5A - 2C = -5

Solving these gives: After substitution and solving: A=7,B=4,C=7A = 7, B = -4, C = 7

Thus, the partial fraction decomposition is: 3x25(x2)(x2+x+1)=7x2+4x+7x2+x+1\frac{3x^{2} - 5}{(x - 2)(x^{2} + x + 1)} = \frac{7}{x - 2} + \frac{-4x + 7}{x^{2} + x + 1}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;