Photo AI

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real - HSC - SSCE Mathematics Extension 2 - Question 2 - 2008 - Paper 1

Question icon

Question 2

Find-real-numbers-$a$-and-$b$-such-that-$(1-+-2i)(1---3i)-=-a-+-ib.$--(b)---(i)-Write-$\frac{1-+-i\sqrt{3}}{1-+-i}$-in-the-form-$x-+-iy$,-where-$x$-and-$y$-are-real-HSC-SSCE Mathematics Extension 2-Question 2-2008-Paper 1.png

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real.... show full transcript

Worked Solution & Example Answer:Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real - HSC - SSCE Mathematics Extension 2 - Question 2 - 2008 - Paper 1

Step 1

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$

96%

114 rated

Answer

To expand (1+2i)(13i)(1 + 2i)(1 - 3i), we use the distributive property:

(1+2i)(13i)=11+1(3i)+2i1+2i(3i)(1 + 2i)(1 - 3i) = 1\cdot1 + 1\cdot(-3i) + 2i\cdot1 + 2i\cdot(-3i)

Calculating each term:

  • 11=11\cdot1 = 1
  • 1(3i)=3i1\cdot(-3i) = -3i
  • 2i1=2i2i\cdot1 = 2i
  • 2i(3i)=6i2=62i\cdot(-3i) = -6i^2 = 6 (since i2=1i^2 = -1)

Now, combining these:

1+63i+2i=7i1 + 6 - 3i + 2i = 7 - i

Thus, we have: a=7a = 7 and b=1b = -1.

Step 2

Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real.

99%

104 rated

Answer

To convert to the form x+iyx + iy, multiply the numerator and denominator by the conjugate of the denominator:

(1+i3)(1i)(1+i)(1i)\frac{(1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)}

Calculating the denominator: (1+i)(1i)=12i2=1(1)=2(1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 2

For the numerator:

distributing gives: (1+i3ii23)=(1+3)+(31)i(1 + i\sqrt{3} - i - i^2\sqrt{3}) = (1 + \sqrt{3}) + (\sqrt{3} - 1)i

Thus:

(1+3)+(31)i2=1+32+i312\frac{(1 + \sqrt{3}) + (\sqrt{3} - 1)i}{2} = \frac{1 + \sqrt{3}}{2} + i\frac{\sqrt{3} - 1}{2}

So, x=1+32x = \frac{1 + \sqrt{3}}{2} and y=312y = \frac{\sqrt{3} - 1}{2}.

Step 3

By expressing both $1 + i\sqrt{3}$ and $1 + i$ in modulus-argument form, write $\frac{1 + i\sqrt{3}}{1 + i}$ in modulus-argument form.

96%

101 rated

Answer

First, we find the modulus and argument of 1+i31 + i\sqrt{3}:

  • Modulus: 1+i3=12+(3)2=1+3=2|1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2
  • Argument: tan1(31)=π3\tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}

Thus, in modulus-argument form, it is: 2(cosπ3+isinπ3)2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)

Now for 1+i1 + i:

  • Modulus: 1+i=12+12=2|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}
  • Argument: tan1(1)=π4\tan^{-1}(1) = \frac{\pi}{4}

So, in modulus-argument form, it is: 2(cosπ4+isinπ4)\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)

Thus, 1+i31+i=22ei(π3π4)=2ei(π12)\frac{1 + i\sqrt{3}}{1 + i} = \frac{2}{\sqrt{2}} e^{i(\frac{\pi}{3} - \frac{\pi}{4})} = \sqrt{2} e^{i(\frac{\pi}{12})}.

Step 4

Hence find $\cos\frac{\pi}{12}$ in surd form.

98%

120 rated

Answer

From the modulus-argument expression, we established: 1+i31+i=2ei(π12)\frac{1 + i\sqrt{3}}{1 + i} = \sqrt{2} e^{i(\frac{\pi}{12})}

Taking the real part: cosπ12=1+32=2\cos\frac{\pi}{12} = \frac{1 + \sqrt{3}}{\sqrt{2}} = \sqrt{2}

Thus, the surd form of cosπ12\cos\frac{\pi}{12} is: $$\frac{\sqrt{6} + \sqrt{2}}{4}.$

Step 5

By using the result of part (ii), or otherwise, calculate $\sqrt{\frac{1 + i}{1 + i}}$.

97%

117 rated

Answer

Since 1+i1+i=1\frac{1 + i}{1 + i} = 1, the square root is simply:

1=1.\sqrt{1} = 1.

Step 6

Find the equation of the locus of $P$ in terms of $x$ and $y$. What type of curve is the locus?

97%

121 rated

Answer

Starting with the equation:

z2+z=Sz^{2} + z = S

Substituting z=x+iyz = x + iy gives: (x+iy)2+(x+iy)=S(x + iy)^{2} + (x + iy) = S

Expanding: x2y2+2xyi+x+iy=Sx^{2} - y^{2} + 2xyi + x + iy = S

Separating real and imaginary parts results in:

  • Real: x2y2+x=Re(S)x^{2} - y^{2} + x = Re(S)
  • Imaginary: 2xy+y=Im(S)2xy + y = Im(S)

The resulting equations describe a quadratic curve, specifically a parabola.

Step 7

Find the complex number representing $M$ in terms of $z$.

96%

114 rated

Answer

Knowing that MM is the midpoint of QRQR, we can express it as: M=Q+R2=ω+ω2M = \frac{Q + R}{2} = \frac{\omega + \overline{\omega}}{2}

Since QQ and RR are conjugates, simplifies to:

double sum M=2cos2π32=cos2π3=z.M = \frac{2\cos{\frac{2\pi}{3}}}{2} = \cos{\frac{2\pi}{3}} = z.

Step 8

The point $S$ is chosen so that $PQRS$ is a parallelogram. Find the complex number represented by $S$.

99%

104 rated

Answer

In a parallelogram, we know that: z+S=P+QS=P+Qz.z + S = P + Q \Rightarrow S = P + Q - z.

Substituting values: S=z+ωz=ω.S = z + \omega - z = \omega.

Thus, the complex number represented by SS is: $$S = \cos{\frac{2\pi}{3}} + i\sin{\frac{2\pi}{3}}.$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;