Photo AI
Question 11
Let $z = oot{3} - i.$ (i) Express $z$ in modulus-argument form. (ii) Show that $z^6$ is real. (iii) Find a positive integer $n$ such that $z^n$ is purely imagina... show full transcript
Step 1
Answer
To express in modulus-argument form, we first calculate the modulus:
oot{3}\text{ is }\sqrt{ oot{3}^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.$$ Next, we find the argument: $$\text{Arg}(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}.$$ Therefore, in modulus-argument form: $$z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right)\right).$$Step 2
Step 3
Step 4
Step 5
Report Improved Results
Recommend to friends
Students Supported
Questions answered