Photo AI

Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Question icon

Question 2

Let-$z-=-2-+-3i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2001-Paper 1.png

Let $z = 2 + 3i$ and $w = 1 + i$. Find $zw$ and $\frac{1}{w}$ in the form $x + iy$. (i) Express $1 + \sqrt{3}i$ in modulus-argument form. (ii) Hence evaluate ... show full transcript

Worked Solution & Example Answer:Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Step 1

Find $zw$ and $\frac{1}{w}$ in the form $x + iy$

96%

114 rated

Answer

To find zwzw, we compute:

zw=(2+3i)(1+i)=2+2i+3i3=1+5i.zw = (2 + 3i)(1 + i) = 2 + 2i + 3i - 3 = -1 + 5i.

So, in the form x+iyx + iy, we have:

zw=1+5i.zw = -1 + 5i.

Next, for 1w\frac{1}{w}:

1w=11+i1i1i=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{1 - i}{1 + 1} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i.

Thus, in the form x+iyx + iy, we have:

1w=1212i.\frac{1}{w} = \frac{1}{2} - \frac{1}{2}i.

Step 2

Express $1 + \sqrt{3}i$ in modulus-argument form.

99%

104 rated

Answer

To find the modulus-argument form, we first calculate the modulus:

1+3i=12+(3)2=1+3=4=2.|1 + \sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.

Next, we find the argument:

Therefore, in modulus-argument form:

1+3i=2(cosπ3+isinπ3).1 + \sqrt{3}i = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).

Step 3

Hence evaluate $(1 + \sqrt{3}i)^{10}$ in the form $x + iy$.

96%

101 rated

Answer

Using De Moivre's Theorem:

(1+3i)10=210(cos(10π3)+isin(10π3)).(1 + \sqrt{3}i)^{10} = 2^{10}\left(\cos\left(10 \cdot \frac{\pi}{3}\right) + i\sin\left(10 \cdot \frac{\pi}{3}\right)\right).

Calculating:

210=1024,2^{10} = 1024,

and,

$$10 \cdot \frac{\pi}{3} = \frac{10\pi}{3} = 3\pi + \frac{\pi}{3} = \frac{\pi}{3} \quad \text{(as 3π3\pi is full rotations)}.

Thus, Thus,

(1 + \sqrt{3}i)^{10} = 1024\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).

Evaluatingthetrigonometricfunctions: Evaluating the trigonometric functions:

= 1024\left(\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 512 + 512\sqrt{3}i.

Step 4

Sketch the region in the complex plane where the inequalities $|z + 1 - 2i| \leq 3$ and $-\frac{\pi}{3} \leq \arg z \leq \frac{\pi}{4}$ both hold.

98%

120 rated

Answer

  1. The inequality z+12i3|z + 1 - 2i| \leq 3 represents a circle centered at (1,2)(-1, 2) with radius 3.
  2. The inequalities for the argument describe a sector in the complex plane:
    • The line heta=π3 heta = -\frac{\pi}{3} and heta=π4 heta = \frac{\pi}{4}.
  3. Thus, the region where both conditions are satisfied is the intersection of the circle and the wedge defined by the two angles.

Step 5

Find all solutions of the equation $z^4 = -1$. Give your answers in modulus-argument form.

97%

117 rated

Answer

The equation can be rewritten as:

z4=eiπ.z^4 = e^{i\pi}.

The fourth roots of eiπe^{i\pi} are given by:

zk=ei(π+2kπ4),k=0,1,2,3.z_k = e^{i(\frac{\pi + 2k\pi}{4})}, \, k = 0, 1, 2, 3.

Calculating:

  • For k=0k = 0: z0=eiπ4.z_0 = e^{i\frac{\pi}{4}}.
  • For k=1k = 1: z1=ei3π4.z_1 = e^{i\frac{3\pi}{4}}.
  • For k=2k = 2: z2=ei5π4.z_2 = e^{i\frac{5\pi}{4}}.
  • For k=3k = 3: z3=ei7π4.z_3 = e^{i\frac{7\pi}{4}}.

Thus, the solutions in modulus-argument form are:

z_1 = 1\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right), z_2 = 1\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right), z_3 = 1\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right). $$

Step 6

Explain why $|z_1 - z_2|^2 = |z_3 - z_2|^2$.

97%

121 rated

Answer

Since triangle ABC is isosceles, the distances from points A (z1z_1) and C (z3z_3) to point B (z2z_2) must be equal. Therefore, it follows that:

z1z2=z3z2.|z_1 - z_2| = |z_3 - z_2|.

Squaring both sides gives:

z1z22=z3z22.|z_1 - z_2|^2 = |z_3 - z_2|^2.

Step 7

Find the complex number expressed in terms of $z_1$, $z_2$, and $z_3$, that represents D.

96%

114 rated

Answer

Since ABCD is a square, D is at a point obtained by rotating point C (z3z_3) by 90 degrees around point B (z2z_2). Thus, the complex representation for D is:

D=z2+i(z3z2).D = z_2 + i(z_3 - z_2).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;