SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home SSCE HSC Mathematics Extension 2 The Argand diagram Let $z=3+i$ and $w=2-5i$
Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1 Question 2
View full question Let $z=3+i$ and $w=2-5i$. Find, in the form $x+iy$,
(i) $z^2$
(ii) $zw$
(iii) $\frac{w}{z}$
(b)
(i) Express $\sqrt{3}-i$ in modulus-argument form.
(ii) Expres... show full transcript
View marking scheme Worked Solution & Example Answer:Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1
(i) $z^2$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find z 2 z^2 z 2 , where z = 3 + i z = 3+i z = 3 + i :
Calculate:
z 2 = ( 3 + i ) 2 = 3 2 + 2 ⋅ 3 ⋅ i + i 2 = 9 + 6 i − 1 = 8 + 6 i z^2 = (3+i)^2 = 3^2 + 2\cdot3\cdot i + i^2 = 9 + 6i - 1 = 8 + 6i z 2 = ( 3 + i ) 2 = 3 2 + 2 ⋅ 3 ⋅ i + i 2 = 9 + 6 i − 1 = 8 + 6 i
(ii) $zw$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find z w zw z w , where z = 3 + i z = 3+i z = 3 + i and w = 2 − 5 i w = 2-5i w = 2 − 5 i :
Calculate:
z w = ( 3 + i ) ( 2 − 5 i ) = 3 ⋅ 2 + 3 ( − 5 i ) + i ⋅ 2 + i ( − 5 i ) = 6 − 15 i + 2 i + 5 = 11 − 13 i zw = (3+i)(2-5i) = 3\cdot2 + 3(-5i) + i\cdot2 + i(-5i)\ = 6 - 15i + 2i + 5 = 11 - 13i z w = ( 3 + i ) ( 2 − 5 i ) = 3 ⋅ 2 + 3 ( − 5 i ) + i ⋅ 2 + i ( − 5 i ) = 6 − 15 i + 2 i + 5 = 11 − 13 i
(iii) $\frac{w}{z}$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find w z \frac{w}{z} z w :
Calculate:
w z = 2 − 5 i 3 + i \frac{w}{z} = \frac{2-5i}{3+i} z w = 3 + i 2 − 5 i
Multiply the numerator and denominator by the conjugate of the denominator:
= ( 2 − 5 i ) ( 3 − i ) ( 3 + i ) ( 3 − i ) = 6 − 2 i − 15 i + 5 9 + 1 = 11 − 17 i 10 = 1.1 − 1.7 i = \frac{(2-5i)(3-i)}{(3+i)(3-i)} = \frac{6 - 2i - 15i + 5}{9 + 1} = \frac{11 - 17i}{10} = 1.1 - 1.7i = ( 3 + i ) ( 3 − i ) ( 2 − 5 i ) ( 3 − i ) = 9 + 1 6 − 2 i − 15 i + 5 = 10 11 − 17 i = 1.1 − 1.7 i
(i) Express $\sqrt{3}-i$ in modulus-argument form. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To express 3 − i \sqrt{3}-i 3 − i in modulus-argument form:
Calculate the modulus:
r = ∣ 3 − i ∣ = ( 3 ) 2 + ( − 1 ) 2 = 3 + 1 = 2 r = |\sqrt{3}-i| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2 r = ∣ 3 − i ∣ = ( 3 ) 2 + ( − 1 ) 2 = 3 + 1 = 2
Calculate the argument:
θ = tan − 1 ( − 1 3 ) = − π 6 \theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6} θ = tan − 1 ( 3 − 1 ) = − 6 π
Thus, the modulus-argument form is:
2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) 2 ( cos ( − 6 π ) + i sin ( − 6 π ) )
(ii) Express $\left(\sqrt{3}-i\right)$ in modulus-argument form. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
This step is identical to the previous one since we are expressing the same complex number:
The modulus-argument form is:
2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) 2 ( cos ( − 6 π ) + i sin ( − 6 π ) )
(iii) Hence express $\left(\sqrt{3}-i\right)^7$ in the form $x+iy$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using De Moivre's theorem:
( 3 − i ) 7 = r 7 ( cos ( 7 θ ) + i sin ( 7 θ ) ) \left(\sqrt{3}-i\right)^7 = r^7\left(\cos(7\theta) + i\sin(7\theta)\right) ( 3 − i ) 7 = r 7 ( cos ( 7 θ ) + i sin ( 7 θ ) )
Calculate r 7 = 2 7 = 128 r^7 = 2^7 = 128 r 7 = 2 7 = 128
Calculate the angle:
7 θ = 7 ( − π 6 ) = − 7 π 6 7\theta = 7(-\frac{\pi}{6}) = -\frac{7\pi}{6} 7 θ = 7 ( − 6 π ) = − 6 7 π
Thus:
128 ( cos ( − 7 π 6 ) + i sin ( − 7 π 6 ) ) 128\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right) 128 ( cos ( − 6 7 π ) + i sin ( − 6 7 π ) )
Evaluating:
cos ( − 7 π 6 ) = − 3 2 \cos\left(-\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} cos ( − 6 7 π ) = − 2 3
sin ( − 7 π 6 ) = − 1 2 \sin\left(-\frac{7\pi}{6}\right) = -\frac{1}{2} sin ( − 6 7 π ) = − 2 1
Thus:
128 ( − 3 2 − i 1 2 ) = − 64 3 − 64 i 128\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = -64\sqrt{3} - 64i 128 ( − 2 3 − i 2 1 ) = − 64 3 − 64 i
Find, in modulus-argument form, all solutions of $z^3=-1$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find all solutions to z 3 = − 1 z^3 = -1 z 3 = − 1 :
Rewrite − 1 -1 − 1 in modulus-argument form:
Modulus: 1 1 1
Argument: π \pi π
Thus, − 1 = 1 ( cos ( π ) + i sin ( π ) ) -1 = 1\left(\cos(\pi) + i\sin(\pi)\right) − 1 = 1 ( cos ( π ) + i sin ( π ) ) .
Using De Moivre's theorem:
z = r 1 / 3 ( cos ( π + 2 k π 3 ) + i sin ( π + 2 k π 3 ) ) for k = 0 , 1 , 2 z = r^{1/3}\left(\cos\left(\frac{\pi + 2k\pi}{3}\right) + i\sin\left(\frac{\pi + 2k\pi}{3}\right)\right) \, \text{for } k = 0, 1, 2 z = r 1/3 ( cos ( 3 π + 2 kπ ) + i sin ( 3 π + 2 kπ ) ) for k = 0 , 1 , 2
Modulus: r 1 / 3 = 1 1 / 3 = 1 r^{1/3} = 1^{1/3} = 1 r 1/3 = 1 1/3 = 1
For k = 0 k=0 k = 0 : z 0 = cos ( π 3 ) + i sin ( π 3 ) = 1 2 + i 3 2 z_0 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2} z 0 = cos ( 3 π ) + i sin ( 3 π ) = 2 1 + i 2 3
For k = 1 k=1 k = 1 : z 1 = cos ( π ) + i sin ( π ) = − 1 + 0 i z_1 = \cos\left(\pi\right) + i\sin\left(\pi\right) = -1 + 0i z 1 = cos ( π ) + i sin ( π ) = − 1 + 0 i
For k = 2 k=2 k = 2 : z 2 = cos ( 5 π 3 ) + i sin ( 5 π 3 ) = 1 2 − i 3 2 z_2 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2} z 2 = cos ( 3 5 π ) + i sin ( 3 5 π ) = 2 1 − i 2 3
Thus, all solutions are:
z 0 = 1 2 + i 3 2 z_0 = \frac{1}{2} + i\frac{\sqrt{3}}{2} z 0 = 2 1 + i 2 3
z 1 = − 1 z_1 = -1 z 1 = − 1
z 2 = 1 2 − i 3 2 z_2 = \frac{1}{2} - i\frac{\sqrt{3}}{2} z 2 = 2 1 − i 2 3
(i) Write down the complex number corresponding to the centre of the ellipse. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the center of the ellipse given by the equation:
∣ z − 1 − 3 i ∣ + ∣ z − 9 − 3 i ∣ = 10 |z-1-3i| + |z-9-3i| = 10 ∣ z − 1 − 3 i ∣ + ∣ z − 9 − 3 i ∣ = 10
The center is the midpoint between the foci:
Foci: ( 1 , 3 ) (1, 3) ( 1 , 3 ) and ( 9 , 3 ) (9, 3) ( 9 , 3 )
Center:
C = ( 1 + 9 2 , 3 ) = ( 5 , 3 ) C = \left(\frac{1+9}{2}, 3\right) = (5, 3) C = ( 2 1 + 9 , 3 ) = ( 5 , 3 )
Thus, the complex number corresponding to the center is:
z C = 5 + 3 i z_C = 5 + 3i z C = 5 + 3 i
(ii) Sketch the ellipse, and state the lengths of the major and minor axes. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To sketch the ellipse described by:
∣ z − 1 − 3 i ∣ + ∣ z − 9 − 3 i ∣ = 10 |z-1-3i| + |z-9-3i| = 10 ∣ z − 1 − 3 i ∣ + ∣ z − 9 − 3 i ∣ = 10
The total sum is 10, indicating the length of the major axis is 10.
Distance between the foci:
d = 9 − 1 = 8 d = 9 - 1 = 8 d = 9 − 1 = 8
Therefore, the semi-major axis a = 10 2 = 5 a = \frac{10}{2} = 5 a = 2 10 = 5
The semi-minor axis b b b can be calculated using:
c = a 2 − b 2 = 4 c = \sqrt{a^2-b^2} = 4 c = a 2 − b 2 = 4 (where c c c is half the distance between the foci)
Hence, b = a 2 − c 2 = 25 − 16 = 3 b = \sqrt{a^2 - c^2} = \sqrt{25 - 16} = 3 b = a 2 − c 2 = 25 − 16 = 3
Thus, the lengths of the axes are:
Major axis length: 10 10 10
Minor axis length: 6 6 6
(iii) Write down the range of $\arg(z)$ for complex numbers $z$ corresponding to points on the ellipse. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the range of arg ( z ) \arg(z) arg ( z ) for the ellipse:
The foci of the ellipse are at 1 + 3 i 1 + 3i 1 + 3 i and 9 + 3 i 9 + 3i 9 + 3 i .
The ellipse will have a minimum and maximum argument depending on these foci:
At z = 1 + 3 i z=1+3i z = 1 + 3 i , arg ( z ) = π 2 \arg(z) = \frac{\pi}{2} arg ( z ) = 2 π
At z = 9 + 3 i z=9+3i z = 9 + 3 i , arg ( z ) = 0 \arg(z) = 0 arg ( z ) = 0
Thus, the range of the argument corresponds to:
( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π )
Join the SSCE students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved