Photo AI

Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Question icon

Question 2

Let-$z=3+i$-and-$w=2-5i$-HSC-SSCE Mathematics Extension 2-Question 2-2006-Paper 1.png

Let $z=3+i$ and $w=2-5i$. Find, in the form $x+iy$, (i) $z^2$ (ii) $zw$ (iii) $\frac{w}{z}$ (b) (i) Express $\sqrt{3}-i$ in modulus-argument form. (ii) Expres... show full transcript

Worked Solution & Example Answer:Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Step 1

(i) $z^2$

96%

114 rated

Answer

To find z2z^2, where z=3+iz = 3+i:

  1. Calculate: z2=(3+i)2=32+23i+i2=9+6i1=8+6iz^2 = (3+i)^2 = 3^2 + 2\cdot3\cdot i + i^2 = 9 + 6i - 1 = 8 + 6i

Step 2

(ii) $zw$

99%

104 rated

Answer

To find zwzw, where z=3+iz = 3+i and w=25iw = 2-5i:

  1. Calculate: zw=(3+i)(25i)=32+3(5i)+i2+i(5i) =615i+2i+5=1113izw = (3+i)(2-5i) = 3\cdot2 + 3(-5i) + i\cdot2 + i(-5i)\ = 6 - 15i + 2i + 5 = 11 - 13i

Step 3

(iii) $\frac{w}{z}$

96%

101 rated

Answer

To find wz\frac{w}{z}:

  1. Calculate: wz=25i3+i\frac{w}{z} = \frac{2-5i}{3+i}

  2. Multiply the numerator and denominator by the conjugate of the denominator: =(25i)(3i)(3+i)(3i)=62i15i+59+1=1117i10=1.11.7i= \frac{(2-5i)(3-i)}{(3+i)(3-i)} = \frac{6 - 2i - 15i + 5}{9 + 1} = \frac{11 - 17i}{10} = 1.1 - 1.7i

Step 4

(i) Express $\sqrt{3}-i$ in modulus-argument form.

98%

120 rated

Answer

To express 3i\sqrt{3}-i in modulus-argument form:

  1. Calculate the modulus: r=3i=(3)2+(1)2=3+1=2r = |\sqrt{3}-i| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2

  2. Calculate the argument: θ=tan1(13)=π6\theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}

Thus, the modulus-argument form is: 2(cos(π6)+isin(π6))2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)

Step 5

(ii) Express $\left(\sqrt{3}-i\right)$ in modulus-argument form.

97%

117 rated

Answer

This step is identical to the previous one since we are expressing the same complex number:

The modulus-argument form is: 2(cos(π6)+isin(π6))2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)

Step 6

(iii) Hence express $\left(\sqrt{3}-i\right)^7$ in the form $x+iy$.

97%

121 rated

Answer

Using De Moivre's theorem:

(3i)7=r7(cos(7θ)+isin(7θ))\left(\sqrt{3}-i\right)^7 = r^7\left(\cos(7\theta) + i\sin(7\theta)\right)

  1. Calculate r7=27=128r^7 = 2^7 = 128

  2. Calculate the angle: 7θ=7(π6)=7π67\theta = 7(-\frac{\pi}{6}) = -\frac{7\pi}{6}

Thus: 128(cos(7π6)+isin(7π6))128\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right)

  1. Evaluating:
    • cos(7π6)=32\cos\left(-\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}
    • sin(7π6)=12\sin\left(-\frac{7\pi}{6}\right) = -\frac{1}{2}

Thus: 128(32i12)=64364i128\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = -64\sqrt{3} - 64i

Step 7

Find, in modulus-argument form, all solutions of $z^3=-1$.

96%

114 rated

Answer

To find all solutions to z3=1z^3 = -1:

  1. Rewrite 1-1 in modulus-argument form:
    • Modulus: 11
    • Argument: π\pi

Thus, 1=1(cos(π)+isin(π))-1 = 1\left(\cos(\pi) + i\sin(\pi)\right).

  1. Using De Moivre's theorem: z=r1/3(cos(π+2kπ3)+isin(π+2kπ3))for k=0,1,2z = r^{1/3}\left(\cos\left(\frac{\pi + 2k\pi}{3}\right) + i\sin\left(\frac{\pi + 2k\pi}{3}\right)\right) \, \text{for } k = 0, 1, 2
    • Modulus: r1/3=11/3=1r^{1/3} = 1^{1/3} = 1
    • For k=0k=0: z0=cos(π3)+isin(π3)=12+i32z_0 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}
    • For k=1k=1: z1=cos(π)+isin(π)=1+0iz_1 = \cos\left(\pi\right) + i\sin\left(\pi\right) = -1 + 0i
    • For k=2k=2: z2=cos(5π3)+isin(5π3)=12i32z_2 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2}

Thus, all solutions are:

  1. z0=12+i32z_0 = \frac{1}{2} + i\frac{\sqrt{3}}{2}
  2. z1=1z_1 = -1
  3. z2=12i32z_2 = \frac{1}{2} - i\frac{\sqrt{3}}{2}

Step 8

(i) Write down the complex number corresponding to the centre of the ellipse.

99%

104 rated

Answer

To find the center of the ellipse given by the equation: z13i+z93i=10|z-1-3i| + |z-9-3i| = 10

The center is the midpoint between the foci:

  • Foci: (1,3)(1, 3) and (9,3)(9, 3)
  • Center: C=(1+92,3)=(5,3)C = \left(\frac{1+9}{2}, 3\right) = (5, 3)

Thus, the complex number corresponding to the center is: zC=5+3iz_C = 5 + 3i

Step 9

(ii) Sketch the ellipse, and state the lengths of the major and minor axes.

96%

101 rated

Answer

To sketch the ellipse described by: z13i+z93i=10|z-1-3i| + |z-9-3i| = 10

  1. The total sum is 10, indicating the length of the major axis is 10.
  2. Distance between the foci: d=91=8d = 9 - 1 = 8
  3. Therefore, the semi-major axis a=102=5a = \frac{10}{2} = 5
  4. The semi-minor axis bb can be calculated using: c=a2b2=4c = \sqrt{a^2-b^2} = 4 (where cc is half the distance between the foci) Hence, b=a2c2=2516=3b = \sqrt{a^2 - c^2} = \sqrt{25 - 16} = 3
  5. Thus, the lengths of the axes are:
    • Major axis length: 1010
    • Minor axis length: 66

Step 10

(iii) Write down the range of $\arg(z)$ for complex numbers $z$ corresponding to points on the ellipse.

98%

120 rated

Answer

To find the range of arg(z)\arg(z) for the ellipse:

  1. The foci of the ellipse are at 1+3i1 + 3i and 9+3i9 + 3i.
  2. The ellipse will have a minimum and maximum argument depending on these foci:
    • At z=1+3iz=1+3i, arg(z)=π2\arg(z) = \frac{\pi}{2}
    • At z=9+3iz=9+3i, arg(z)=0\arg(z) = 0

Thus, the range of the argument corresponds to: (0,π2)\left(0, \frac{\pi}{2}\right)

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;