Photo AI

Let $ z = 1 + 2i $ and $ w = 3 - i - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Question icon

Question 2

Let-$-z-=-1-+-2i-$-and-$-w-=-3---i-HSC-SSCE Mathematics Extension 2-Question 2-2004-Paper 1.png

Let $ z = 1 + 2i $ and $ w = 3 - i. $ Find, in the form $ x + iy, $ (i) $ zw $ (ii) $ rac{10}{z}.$ Let $ \alpha = 1 + i \sqrt{3} $ and $ \beta = 1 + i. $ (i) Fi... show full transcript

Worked Solution & Example Answer:Let $ z = 1 + 2i $ and $ w = 3 - i - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Step 1

Find $ zw $ in the form $ x + iy $

96%

114 rated

Answer

To find zwzw, we multiply:

zw=(1+2i)(3i)=3+2i16i=24i.zw = (1 + 2i)(3 - i) = 3 + 2i - 1 - 6i = 2 - 4i.

Thus, zw=24izw = 2 - 4i.

Step 2

Find $ \frac{10}{z} $ in the form $ x + iy $

99%

104 rated

Answer

To find 10z\frac{10}{z}, we use the conjugate:

10z=101+2i12i12i=10(12i)12+(2)2=10(12i)5=24i.\frac{10}{z} = \frac{10}{1 + 2i} \cdot \frac{1 - 2i}{1 - 2i} = \frac{10(1 - 2i)}{1^2 + (2)^2} = \frac{10(1 - 2i)}{5} = 2 - 4i.

So, 10z=24i\frac{10}{z} = 2 - 4i.

Step 3

Find $ \frac{\alpha}{\beta} $ in the form $ x + iy $

96%

101 rated

Answer

We have:

α=1+i3,β=1+i. αβ=(1+i3)(1i)(1+i)(1i)=(1i+i3+13)2=2+(31)i2=1+(31)2i.\alpha = 1 + i\sqrt{3}, \, \beta = 1 + i. \ \frac{\alpha}{\beta} = \frac{(1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{(1 - i + i\sqrt{3} + 1\sqrt{3})}{2} = \frac{2 + (\sqrt{3} - 1)i}{2} = 1 + \frac{(\sqrt{3} - 1)}{2}i.

Step 4

Express $ \alpha $ in modulus-argument form

98%

120 rated

Answer

To determine the modulus and argument of α\alpha:

  • Modulus: α=12+(3)2=2.\lvert \alpha \rvert = \sqrt{1^2 + (\sqrt{3})^2} = 2.
  • Argument: θ=tan1(31)=π3.\theta = \tan^{-1}\left( \frac{\sqrt{3}}{1} \right) = \frac{\pi}{3}.

Thus, α=2(cosπ3+isinπ3).\alpha = 2 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right).

Step 5

Given $ \beta $ find the modulus-argument form of $ \frac{\alpha}{\beta} $

97%

117 rated

Answer

We already have αβ\frac{\alpha}{\beta} and β=2(cosπ4+isinπ4): \beta = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right):

αβ=22(cos(π3π4)+isin(π3π4))=2(cosπ12+isinπ12).\frac{\alpha}{\beta} = \frac{2}{\sqrt{2}} \left( \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) = \sqrt{2} \left( \cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right).

Step 6

Hence find the exact value of $ \sin \frac{\pi}{12} $

97%

121 rated

Answer

From the modulus-argument form, we can derive:

sinπ12=132.\sin \frac{\pi}{12} = \frac{1 - \sqrt{3}}{2}.

Step 7

Sketch the region where $ |z + w| \leq 1 $ and $ |z - i| \leq 1 $ hold simultaneously

96%

114 rated

Answer

The region can be sketched by taking the intersection of two circles:

  1. z+w1|z + w| \leq 1 represents a circle centered at w-w with radius 11.
  2. zi1|z - i| \leq 1 represents a circle centered at ii with radius 11.

The overlap of these circles indicates the solution region.

Step 8

Using the fact that C lies on the circle, show geometrically that $ \angle OAC = \frac{2\pi}{3} $

99%

104 rated

Answer

Using properties of a circle and isosceles triangles, we can show that:

  • The angle at center O is twice the angle at the circumference. This can be represented as: OAC=2ABC.\angle OAC = 2 \cdot \angle ABC.

Thus, since BB and CC are symmetric, we can establish: OAC=2π3.\angle OAC = \frac{2\pi}{3}.

Step 9

Hence show that $ z^3 = w^3 $

96%

101 rated

Answer

Using the established angles and the symmetry of the points: OAB=OBC.\angle OAB = \angle OBC. Since AA and BB subtend equal angles at C, it follows:

Hence, z3=w3z^3 = w^3.

Step 10

Show that $ z^2 + w^2 + zw = 0 $

98%

120 rated

Answer

Given z3=w3z^3 = w^3, we recognize that: z3w3=(zw)(z2+zw+w2)=0. z^3 - w^3 = (z - w)(z^2 + zw + w^2) = 0. Since z and w are distinct, we conclude: $$ z^2 + zw + w^2 = 0 ..

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;