Photo AI

A classroom experiment was set up to simulate the industrial extraction of zinc metal from an aqueous solution of zinc ions by electrolysis - VCE - SSCE Chemistry - Question 7 - 2009 - Paper 1

Question icon

Question 7

A-classroom-experiment-was-set-up-to-simulate-the-industrial-extraction-of-zinc-metal-from-an-aqueous-solution-of-zinc-ions-by-electrolysis-VCE-SSCE Chemistry-Question 7-2009-Paper 1.png

A classroom experiment was set up to simulate the industrial extraction of zinc metal from an aqueous solution of zinc ions by electrolysis. In this experiment 150 m... show full transcript

Worked Solution & Example Answer:A classroom experiment was set up to simulate the industrial extraction of zinc metal from an aqueous solution of zinc ions by electrolysis - VCE - SSCE Chemistry - Question 7 - 2009 - Paper 1

Step 1

a. Write a half-equation for the oxidation reaction.

96%

114 rated

Answer

The oxidation reaction in the electrolysis of zinc sulfate involves the oxidation of zinc ions:

Zn2+(aq)+2eZn(s)\text{Zn}^{2+}(aq) + 2e^- \rightarrow \text{Zn}(s)

This half-equation indicates that zinc ions in solution are reduced to solid zinc by gaining electrons.

Step 2

b. Calculate the electric current, in A, supplied to the cell during the electrolysis.

99%

104 rated

Answer

First, we need to calculate the number of moles of zinc produced:

n=0.900 g65.4 g/mol=0.01376 moln = \frac{0.900 \text{ g}}{65.4 \text{ g/mol}} = 0.01376 \text{ mol}

Since it takes 2 moles of electrons to produce 1 mole of zinc, the moles of electrons transferred, (n(e^-)), can be calculated as:

n(e)=2×n=2×0.01376 mol=0.02752 moln(e^-) = 2 \times n = 2 \times 0.01376 \text{ mol} = 0.02752 \text{ mol}

Next, we calculate the charge using the formula:

Q=n(e)×FQ = n(e^-) \times F

Where (F = 96500 \text{ C/mol}) is Faraday's constant:

Q=0.02752 mol×96500 C/mol=2656.0 CQ = 0.02752 \text{ mol} \times 96500 \text{ C/mol} = 2656.0 \text{ C}

Now, with electrolysis time of 30 minutes (or 1800 seconds), the current can be calculated using:

I=Qt=2656.0 C1800 s1.47 AI = \frac{Q}{t} = \frac{2656.0 \text{ C}}{1800 \text{ s}} \approx 1.47 \text{ A}

Expressing with significant figures:

I1.48 AI \approx 1.48 \text{ A}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;