Photo AI

Different quantities of nitrogen oxide (NO) are listed below - VCE - SSCE Chemistry - Question 3 - 2007 - Paper 1

Question icon

Question 3

Different-quantities-of-nitrogen-oxide-(NO)-are-listed-below-VCE-SSCE Chemistry-Question 3-2007-Paper 1.png

Different quantities of nitrogen oxide (NO) are listed below. Which one contains the least number of molecules? A. $6 \times 10^2$ L at 273 K and 1 atm B. $6 \times ... show full transcript

Worked Solution & Example Answer:Different quantities of nitrogen oxide (NO) are listed below - VCE - SSCE Chemistry - Question 3 - 2007 - Paper 1

Step 1

A. $6 \times 10^2$ L at 273 K and 1 atm

96%

114 rated

Answer

To determine the number of molecules in 6 x 10² L of NO at standard temperature and pressure (STP), we can use the ideal gas law. Under STP, 1 mole of any gas occupies approximately 22.4 L. Therefore, the number of moles of NO is calculated as follows:

n=VVolume per mole=6×102 L22.4 L/mol26.79 moln = \frac{V}{\text{Volume per mole}} = \frac{6 \times 10^2 \text{ L}}{22.4 \text{ L/mol}} \approx 26.79 \text{ mol}

The number of molecules can then be found by multiplying the moles by Avogadro's number (NA6.02×1023 molecules/molN_A \approx 6.02 \times 10^{23} \text{ molecules/mol}):

26.79 mol×6.02×1023 molecules/mol1.61×1025 molecules26.79 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules/mol} \approx 1.61 \times 10^{25} \text{ molecules}

Step 2

B. $6 \times 10^3$ molecules

99%

104 rated

Answer

This part is straightforward: it contains exactly 6×1036 \times 10^3 molecules, which equals 6000 molecules.

Step 3

C. $6 \times 10^2$ g

96%

101 rated

Answer

To find the number of molecules in 6 x 10² g of NO, we first need to determine the number of moles. The molar mass of NO is approximately 30 g/mol. Thus:

n=6×102 g30 g/mol=20 moln = \frac{6 \times 10^2 \text{ g}}{30 \text{ g/mol}} = 20 \text{ mol}

Then, the number of molecules is:

20 mol×6.02×1023 molecules/mol1.20×1025 molecules20 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules/mol} \approx 1.20 \times 10^{25} \text{ molecules}

Step 4

D. 6 mol

98%

120 rated

Answer

From the definition, 6 moles of any substance contains:

6 mol×6.02×1023 molecules/mol3.612×1024 molecules6 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules/mol} \approx 3.612 \times 10^{24} \text{ molecules}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;