Photo AI

Figure 1 shows apparatus used to investigate the inverse-square law for gamma radiation - AQA - A-Level Physics - Question 1 - 2021 - Paper 3

Question icon

Question 1

Figure-1-shows-apparatus-used-to-investigate-the-inverse-square-law-for-gamma-radiation-AQA-A-Level Physics-Question 1-2021-Paper 3.png

Figure 1 shows apparatus used to investigate the inverse-square law for gamma radiation. A sealed source that emits gamma radiation is held in a socket attached to ... show full transcript

Worked Solution & Example Answer:Figure 1 shows apparatus used to investigate the inverse-square law for gamma radiation - AQA - A-Level Physics - Question 1 - 2021 - Paper 3

Step 1

Describe a procedure for the student to find the value of $d$

96%

114 rated

Answer

  1. Position the Set-Square: Place a set-square vertically under the radiation detector, making sure it is parallel to the detector's position.
  2. Align the Open End of Source: Adjust the position of the sealed source so that its open end aligns with one edge of the set-square.
  3. Measure the Distance dd: Use a ruler to measure the distance from the bottom of the set-square (in contact with the bench) to the open end of the source. This measurement gives the value of dd.
  4. Annotate Figure 1: On Figure 1, indicate the set-square's position relative to the detector and the source, clearly marking the height dd for clarity.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Physics topics to explore

Use of SI Units & Their Prefixes

Physics - AQA

Limitation of Physical Measurements

Physics - AQA

Atomic Structure & Decay Equations

Physics - AQA

Classification of Particles

Physics - AQA

Conservation Laws & Particle Interactions

Physics - AQA

The Photoelectric Effect

Physics - AQA

Energy Levels & Photon Emission

Physics - AQA

Longitudinal & Transverse Waves

Physics - AQA

Stationary Waves

Physics - AQA

Interference

Physics - AQA

Diffraction

Physics - AQA

Refraction

Physics - AQA

Scalars & Vectors

Physics - AQA

Moments

Physics - AQA

Equations of Motion

Physics - AQA

Newtons Laws of Motion

Physics - AQA

Linear Momentum & Conservation

Physics - AQA

Work, Energy & Power

Physics - AQA

Bulk Properties of Solids

Physics - AQA

The Young Modulus

Physics - AQA

Current–Voltage Characteristics

Physics - AQA

Resistance & Resistivity

Physics - AQA

Circuits & The Potential Divider

Physics - AQA

Electromotive Force & Internal Resistance

Physics - AQA

Circular Motion

Physics - AQA

Simple Harmonic Motion

Physics - AQA

Forced Vibrations & Resonance

Physics - AQA

Thermal Energy Transfer

Physics - AQA

Ideal Gases

Physics - AQA

Molecular Kinetic Theory Model

Physics - AQA

Gravitational Fields

Physics - AQA

Gravitational Potential

Physics - AQA

Orbits of Planets & Satellites

Physics - AQA

Electric Fields

Physics - AQA

Electric Potential

Physics - AQA

Capacitance

Physics - AQA

Capacitor Charge & Discharge

Physics - AQA

Magnetic Fields

Physics - AQA

Electromagnetic Induction

Physics - AQA

Alternating Currents & Transformers

Physics - AQA

Alpha, Beta & Gamma Radiation

Physics - AQA

Radioactive Decay

Physics - AQA

Nuclear Instability & Radius

Physics - AQA

Nuclear Fusion & Fission

Physics - AQA

Telescopes

Physics - AQA

Classification of Stars

Physics - AQA

Cosmology

Physics - AQA

Rotational Dynamics

Physics - AQA

Thermodynamics & Engines

Physics - AQA

The Discovery of the Electron

Physics - AQA

Special Relativity

Physics - AQA

;