Photo AI
Question 1
1 Some intercontinental jet airliners use kerosene as fuel. The formula of kerosene may be taken as C₁₄H₃₀. (a) To which homologous series of compounds does kerosen... show full transcript
Step 1
Step 2
Step 3
Answer
To calculate the mass of C₁₄H₃₀ burnt:
egin{align*}
ext{Total distance} &= 8195 ext{ km} \
ext{Kerosene burnt per km} &= 10.8 ext{ kg} \
ext{Total kerosene burnt} &= 8195 imes 10.8 ext{ kg} \
&= 88.506 ext{ kg} \
&= rac{88.506}{1000} ext{ tonnes} \
&= 0.0885 ext{ tonnes} \
ext{(rounded to one decimal place: 88.5)}
ext{Therefore, approximately } 88.5 ext{ kg is burned, or } 0.0885 ext{ tonnes.}
ext{[1 tonne = 1000 kg]}
ext{So the final answer is} ext{88.5 kg}.
\end{align*}
Step 4
Answer
To find the mass of CO₂ produced, we first calculate based on the kerosene burnt:
egin{align*} ext{Molar mass of C}{14} ext{H}{30} &= (14 imes 12 + 30 imes 1) = 198 ext{ g/mol} \ ext{From (b), the reaction produces:} \ 2 ext{ C}{14} ext{H}{30} ightarrow 28 ext{ CO}_2 \ ext{Thus, }rac{88.5 g}{198 g/mol} imes rac{28}{2} = 275.3 g \ &= rac{275.3 g}{1000} ext{ tonnes} \ &= 0.2753 ext{ tonnes of CO}_2 ext{ produced during the flight.} ext{(rounded to one decimal place: 275.3)} \end{align*}
Step 5
Answer
Using the equation:
,
we can identify:
Now substituting in the values:
n = rac{PV}{RT} = rac{(6 imes 10^5 ext{ Pa})(710 imes 10^{-6} ext{ m}^3)}{(8.31 ext{ J/(mol K)})(293 ext{ K})}
Calculating gives:
ightarrow 0.175 ext{ moles}$$Step 6
Answer
At 10,000 m, we can use the equation:
P = rac{nRT}{V} where:
Substituting in the values: P = rac{(0.175)(8.31)(278)}{710 imes 10^{-6}} = 56940.165 ext{ Pa} This rounds to approximately 56940 Pa.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Atomic Structure
Chemistry - AQA
Formulae, Equations & Calculations
Chemistry - AQA
The Mole, Avogadro & The Ideal Gas Equation
Chemistry - AQA
Types of Bonding & Properties
Chemistry - AQA
Molecules: Shapes & Forces
Chemistry - AQA
Energetics
Chemistry - AQA
Kinetics
Chemistry - AQA
Chemical Equilibria, Le Chateliers Principle & Kc
Chemistry - AQA
Oxidation, Reduction & Redox Equations
Chemistry - AQA
Periodicity
Chemistry - AQA
Group 2, the Alkaline Earth Metals
Chemistry - AQA
Group 7 (17), the Halogens
Chemistry - AQA
Introduction to Organic Chemistry
Chemistry - AQA
Alkanes
Chemistry - AQA
Halogenoalkanes
Chemistry - AQA
Alkenes
Chemistry - AQA
Alcohols
Chemistry - AQA
Organic Analysis
Chemistry - AQA
Organic & Inorganic Chemistry Practicals
Chemistry - AQA
Thermodynamics
Chemistry - AQA
Rate Equations
Chemistry - AQA
Equilibrium constant (Kp) for Homogeneous Systems
Chemistry - AQA
Electrode Potentials & Electrochemical Cells
Chemistry - AQA
Fundamentals of Acids & Bases
Chemistry - AQA
Further Acids & Bases Calculations
Chemistry - AQA
Properties of Period 3 Elements & their Oxides
Chemistry - AQA
Transition Metals
Chemistry - AQA
Reactions of Ions in Aqueous Solution
Chemistry - AQA
Optical Isomerism
Chemistry - AQA
Aldehydes & Ketones
Chemistry - AQA
Carboxylic Acids & Derivatives
Chemistry - AQA
Aromatic Chemistry
Chemistry - AQA
Amines
Chemistry - AQA
Polymers
Chemistry - AQA
Amino acids, Proteins & DNA
Chemistry - AQA
Organic Synthesis
Chemistry - AQA
Organic Mechanisms
Chemistry - AQA
Nuclear Magnetic Resonance Spectroscopy
Chemistry - AQA
Chromatography
Chemistry - AQA
Physical Chemistry Practicals
Chemistry - AQA
Organic Chemistry Practicals
Chemistry - AQA