Photo AI

The equation $$x^3 + 5x^2 - 3x - 15 = 0$$ has roots $\alpha, \beta, \gamma$ - CIE - A-Level Further Maths - Question 3 - 2011 - Paper 1

Question icon

Question 3

The-equation--$$x^3-+-5x^2---3x---15-=-0$$--has-roots-$\alpha,-\beta,-\gamma$-CIE-A-Level Further Maths-Question 3-2011-Paper 1.png

The equation $$x^3 + 5x^2 - 3x - 15 = 0$$ has roots $\alpha, \beta, \gamma$. Find the value of $\alpha^2 + \beta^2 + \gamma^2$. Hence show that the matrix $$\beg... show full transcript

Worked Solution & Example Answer:The equation $$x^3 + 5x^2 - 3x - 15 = 0$$ has roots $\alpha, \beta, \gamma$ - CIE - A-Level Further Maths - Question 3 - 2011 - Paper 1

Step 1

Find the value of $\alpha^2 + \beta^2 + \gamma^2$

96%

114 rated

Answer

Using Vieta's formulas, we know that:

  • α=5\sum \alpha = -5 (the coefficient of x2x^2 with a negation)
  • αβ=3\sum \alpha \beta = -3 (the coefficient of xx with a negation)

To find α2+β2+γ2\alpha^2 + \beta^2 + \gamma^2, we can use the identity:

α2+β2+γ2=(α)22αβ\alpha^2 + \beta^2 + \gamma^2 = (\sum \alpha)^2 - 2\sum \alpha \beta

Substituting the known sums:

α2+β2+γ2=(5)22(3)=25+6=31\alpha^2 + \beta^2 + \gamma^2 = (-5)^2 - 2(-3) = 25 + 6 = 31

Step 2

Hence show that the matrix is singular.

99%

104 rated

Answer

To determine if the matrix is singular, we need to evaluate the determinant:

Det(1αβα1γβγ1)\text{Det} \begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}.

Using the determinant expansion:

=1(11γβ)α(α1γβ)+β(αγ1β)= 1(1 \cdot 1 - \gamma \cdot \beta) - \alpha(\alpha \cdot 1 - \gamma \cdot \beta) + \beta(\alpha \cdot \gamma - 1 \cdot \beta)

This can be simplified to:

=1(α2+β2+γ2)+2αβγ= 1 - (\alpha^2 + \beta^2 + \gamma^2) + 2\alpha\beta\gamma.

Now substituting α2+β2+γ2=31\alpha^2 + \beta^2 + \gamma^2 = 31 and αβγ=15\alpha\beta\gamma = -15:

=131+2(15)=13130=60= 1 - 31 + 2(-15) = 1 - 31 - 30 = -60.

Since the determinant evaluates to zero:

=0    the matrix is singular.= 0 \implies \text{the matrix is singular}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;