Photo AI

Find a cartesian equation of the plane \( \Pi \) containing the lines \( \mathbf{r} = 3\mathbf{i} + \mathbf{k} + s(2\mathbf{i} + \mathbf{j} - \mathbf{k}) \) and \( \mathbf{r} = -3\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} + t(-\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) \) - CIE - A-Level Further Maths - Question 9 - 2011 - Paper 1

Question icon

Question 9

Find-a-cartesian-equation-of-the-plane-\(-\Pi-\)-containing-the-lines--\(-\mathbf{r}-=-3\mathbf{i}-+-\mathbf{k}-+-s(2\mathbf{i}-+-\mathbf{j}---\mathbf{k})-\)-and-\(-\mathbf{r}-=--3\mathbf{i}---7\mathbf{j}-+-10\mathbf{k}-+-t(-\mathbf{i}---3\mathbf{j}-+-4\mathbf{k})-\)-CIE-A-Level Further Maths-Question 9-2011-Paper 1.png

Find a cartesian equation of the plane \( \Pi \) containing the lines \( \mathbf{r} = 3\mathbf{i} + \mathbf{k} + s(2\mathbf{i} + \mathbf{j} - \mathbf{k}) \) and \( ... show full transcript

Worked Solution & Example Answer:Find a cartesian equation of the plane \( \Pi \) containing the lines \( \mathbf{r} = 3\mathbf{i} + \mathbf{k} + s(2\mathbf{i} + \mathbf{j} - \mathbf{k}) \) and \( \mathbf{r} = -3\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} + t(-\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) \) - CIE - A-Level Further Maths - Question 9 - 2011 - Paper 1

Step 1

Find the cartesian equation of the plane \( \Pi \)

96%

114 rated

Answer

To find the equation of the plane containing the lines, we first determine the direction vectors of the given lines. The direction vector of the first line is ( \mathbf{d_1} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} ), and the second line has the direction vector ( \mathbf{d_2} = -\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} ).

Next, we find the normal vector of the plane by calculating the cross product of the direction vectors:

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ -1 & -3 & 4 \end{vmatrix}$$ Calculating this determinant gives \( \mathbf{n} = \mathbf{i}(-3 + 4) - \mathbf{j}(-8 + 1) + \mathbf{k}(-6 - 1) = \mathbf{i} + 7\mathbf{j} - 7\mathbf{k}. \) Therefore, the normal vector is \( \mathbf{n} = 2\mathbf{i} + 1\mathbf{j} - 3\mathbf{k}. \) The equation of the plane can be expressed as: $$2(x - x_0) + 1(y - y_0) - 3(z - z_0) = 0$$ Substituting a point from either line (like \( \mathbf{r} = -3\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} \)) leads to the final equation.

Step 2

(i) the position vector of the point where \( \ell \) meets \( \Pi \)

99%

104 rated

Answer

To find the intersection of line ( \ell ) and plane ( \Pi ), substitute the parameterized form of line ( \ell ):
( \mathbf{r} = (6 + 2\lambda)\mathbf{i} + (-2 + \lambda) extbf{j} + (1 - 4\lambda)\mathbf{k} ) into the plane equation we found earlier.

Solving for ( \lambda ) will give us the intersection point's position vector:

Thus, computing will lead us to find the vector at ( \lambda = 1 ), yielding ( 4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}. )

Step 3

(ii) the perpendicular distance from \( P \) to \( \Pi \)

96%

101 rated

Answer

The distance ( D ) from point ( P ) to the plane can be calculated using the formula:

D=n(r0rplane)nD = \frac{|\mathbf{n} \cdot (\mathbf{r}_0 - \mathbf{r}_{plane})|}{|\mathbf{n}|}

where ( \mathbf{r}_0 ) is position vector of point ( P ) and ( \mathbf{n} ) is the normal vector. Substituting the values gives the perpendicular distance.

Step 4

(iii) the acute angle between \( \ell \) and \( \Pi \)

98%

120 rated

Answer

To find the acute angle ( \theta ) between line ( \ell ) and plane ( \Pi ):
The angle can be found using the formula:

sinθ=dndn\sin \theta = \frac{|\mathbf{d} \cdot \mathbf{n}|}{|\mathbf{d}| |\mathbf{n}|}

Where ( \mathbf{d} ) is the direction vector of line ( \ell ). Upon calculation, we will find ( \theta ) to be approximately ( 0.236 \text{ radians} ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;