Photo AI
Question 8
The function f has domain −2 ≤ x < 6 and is linear from (−2, 10) to (2, 0) and from (2, 0) to (6, 4). A sketch of the graph of y = f(x) is shown in Figure 1. (a) Wr... show full transcript
Step 1
Answer
To determine the range of the function f, we look at the graph provided. The function decreases from (−2, 10) to (2, 0) and then increases again from (2, 0) to (6, 4). The minimum value reached is 0 and the maximum value is 10. Therefore, the range of f is 0 ≤ f(x) ≤ 10.
Step 2
Answer
To find f(0), we identify the relevant segment of the function. Since 0 lies within the interval (−2, 2), we use the equation of the line segment from (−2, 10) to (2, 0). The slope (m) is calculated as:
Using the point-slope form, the equation of the line is given by:
Substituting x = 0 gives:
Step 3
Answer
To find the inverse of the function g defined by ( g(x) = \frac{4 + 3x}{5 - x} ), we substitute g(x) with y:
To solve for x, we first cross-multiply:
Expanding yields:
Rearranging terms leads to:
Factoring x out results in:
Thus, we can express x as:
Hence, the inverse function is:
Step 4
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths: Pure - AQA
1.2 Proof by Contradiction
Maths: Pure - AQA
2.1 Laws of Indices & Surds
Maths: Pure - AQA
2.2 Quadratics
Maths: Pure - AQA
2.3 Simultaneous Equations
Maths: Pure - AQA
2.4 Inequalities
Maths: Pure - AQA
2.5 Polynomials
Maths: Pure - AQA
2.6 Rational Expressions
Maths: Pure - AQA
2.7 Graphs of Functions
Maths: Pure - AQA
2.8 Functions
Maths: Pure - AQA
2.9 Transformations of Functions
Maths: Pure - AQA
2.10 Combinations of Transformations
Maths: Pure - AQA
2.11 Partial Fractions
Maths: Pure - AQA
2.12 Modelling with Functions
Maths: Pure - AQA
2.13 Further Modelling with Functions
Maths: Pure - AQA
3.1 Equation of a Straight Line
Maths: Pure - AQA
3.2 Circles
Maths: Pure - AQA
4.1 Binomial Expansion
Maths: Pure - AQA
4.2 General Binomial Expansion
Maths: Pure - AQA
4.3 Arithmetic Sequences & Series
Maths: Pure - AQA
4.4 Geometric Sequences & Series
Maths: Pure - AQA
4.5 Sequences & Series
Maths: Pure - AQA
4.6 Modelling with Sequences & Series
Maths: Pure - AQA
5.1 Basic Trigonometry
Maths: Pure - AQA
5.2 Trigonometric Functions
Maths: Pure - AQA
5.3 Trigonometric Equations
Maths: Pure - AQA
5.4 Radian Measure
Maths: Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths: Pure - AQA
5.6 Compound & Double Angle Formulae
Maths: Pure - AQA
5.7 Further Trigonometric Equations
Maths: Pure - AQA
5.8 Trigonometric Proof
Maths: Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths: Pure - AQA
6.1 Exponential & Logarithms
Maths: Pure - AQA
6.2 Laws of Logarithms
Maths: Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths: Pure - AQA
7.1 Differentiation
Maths: Pure - AQA
7.2 Applications of Differentiation
Maths: Pure - AQA
7.3 Further Differentiation
Maths: Pure - AQA
7.4 Further Applications of Differentiation
Maths: Pure - AQA
7.5 Implicit Differentiation
Maths: Pure - AQA
8.1 Integration
Maths: Pure - AQA
8.2 Further Integration
Maths: Pure - AQA
8.3 Differential Equations
Maths: Pure - AQA
9.1 Parametric Equations
Maths: Pure - AQA
10.1 Solving Equations
Maths: Pure - AQA
10.2 Modelling involving Numerical Methods
Maths: Pure - AQA
11.1 Vectors in 2 Dimensions
Maths: Pure - AQA
11.2 Vectors in 3 Dimensions
Maths: Pure - AQA