Photo AI

2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \) - Edexcel - A-Level Maths: Pure - Question 4 - 2012 - Paper 8

Question icon

Question 4

2.-(a)-Use-integration-by-parts-to-find-\(-\int-x-\sin-3x-\,-dx-\)-Edexcel-A-Level Maths: Pure-Question 4-2012-Paper 8.png

2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \). (b) Using your answer to part (a), find \( \int x \cos 3x \, dx \).

Worked Solution & Example Answer:2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \) - Edexcel - A-Level Maths: Pure - Question 4 - 2012 - Paper 8

Step 1

Use integration by parts to find \( \int x \sin 3x \, dx \)

96%

114 rated

Answer

To solve ( \int x \sin 3x , dx ) using integration by parts, we apply the formula:

[ \int u , dv = uv - \int v , du ]

Let:

  • ( u = x ) → ( du = dx )
  • ( dv = \sin 3x , dx ) → ( v = -\frac{1}{3} \cos 3x )

Plugging these into the integration by parts formula, we have:

[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x , dx ]

Now, we evaluate the remaining integral:

[ \int \cos 3x , dx = \frac{1}{3} \sin 3x + C ]

Thus, substituting this back, we get:

[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C ]

Step 2

Using your answer to part (a), find \( \int x \cos 3x \, dx \)

99%

104 rated

Answer

Using the result from part (a), we can find ( \int x \cos 3x , dx ) again using integration by parts:

Let:

  • ( u = x ) → ( du = dx )
  • ( dv = \cos 3x , dx ) → ( v = \frac{1}{3} \sin 3x )

Now apply the formula:

[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x - \int \frac{1}{3} \sin 3x , dx ]

From part (a), we know: [ \int \sin 3x , dx = -\frac{1}{3} \cos 3x + C ]

Thus substituting back, we have:

[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;