Photo AI
Question 4
2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \). (b) Using your answer to part (a), find \( \int x \cos 3x \, dx \).
Step 1
Answer
To solve ( \int x \sin 3x , dx ) using integration by parts, we apply the formula:
[ \int u , dv = uv - \int v , du ]
Let:
Plugging these into the integration by parts formula, we have:
[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x , dx ]
Now, we evaluate the remaining integral:
[ \int \cos 3x , dx = \frac{1}{3} \sin 3x + C ]
Thus, substituting this back, we get:
[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C ]
Step 2
Answer
Using the result from part (a), we can find ( \int x \cos 3x , dx ) again using integration by parts:
Let:
Now apply the formula:
[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x - \int \frac{1}{3} \sin 3x , dx ]
From part (a), we know: [ \int \sin 3x , dx = -\frac{1}{3} \cos 3x + C ]
Thus substituting back, we have:
[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths: Pure - AQA
1.2 Proof by Contradiction
Maths: Pure - AQA
2.1 Laws of Indices & Surds
Maths: Pure - AQA
2.2 Quadratics
Maths: Pure - AQA
2.3 Simultaneous Equations
Maths: Pure - AQA
2.4 Inequalities
Maths: Pure - AQA
2.5 Polynomials
Maths: Pure - AQA
2.6 Rational Expressions
Maths: Pure - AQA
2.7 Graphs of Functions
Maths: Pure - AQA
2.8 Functions
Maths: Pure - AQA
2.9 Transformations of Functions
Maths: Pure - AQA
2.10 Combinations of Transformations
Maths: Pure - AQA
2.11 Partial Fractions
Maths: Pure - AQA
2.12 Modelling with Functions
Maths: Pure - AQA
2.13 Further Modelling with Functions
Maths: Pure - AQA
3.1 Equation of a Straight Line
Maths: Pure - AQA
3.2 Circles
Maths: Pure - AQA
4.1 Binomial Expansion
Maths: Pure - AQA
4.2 General Binomial Expansion
Maths: Pure - AQA
4.3 Arithmetic Sequences & Series
Maths: Pure - AQA
4.4 Geometric Sequences & Series
Maths: Pure - AQA
4.5 Sequences & Series
Maths: Pure - AQA
4.6 Modelling with Sequences & Series
Maths: Pure - AQA
5.1 Basic Trigonometry
Maths: Pure - AQA
5.2 Trigonometric Functions
Maths: Pure - AQA
5.3 Trigonometric Equations
Maths: Pure - AQA
5.4 Radian Measure
Maths: Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths: Pure - AQA
5.6 Compound & Double Angle Formulae
Maths: Pure - AQA
5.7 Further Trigonometric Equations
Maths: Pure - AQA
5.8 Trigonometric Proof
Maths: Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths: Pure - AQA
6.1 Exponential & Logarithms
Maths: Pure - AQA
6.2 Laws of Logarithms
Maths: Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths: Pure - AQA
7.1 Differentiation
Maths: Pure - AQA
7.2 Applications of Differentiation
Maths: Pure - AQA
7.3 Further Differentiation
Maths: Pure - AQA
7.4 Further Applications of Differentiation
Maths: Pure - AQA
7.5 Implicit Differentiation
Maths: Pure - AQA
8.1 Integration
Maths: Pure - AQA
8.2 Further Integration
Maths: Pure - AQA
8.3 Differential Equations
Maths: Pure - AQA
9.1 Parametric Equations
Maths: Pure - AQA
10.1 Solving Equations
Maths: Pure - AQA
10.2 Modelling involving Numerical Methods
Maths: Pure - AQA
11.1 Vectors in 2 Dimensions
Maths: Pure - AQA
11.2 Vectors in 3 Dimensions
Maths: Pure - AQA