Photo AI

Solve for x: 1.1.1 3x² + 10x + 6 = 0 (correct to TWO decimal places) 1.1.2 √(6x² - 15) = x + 1 1.1.3 x² + 2x - 24 ≥ 0 - English General - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1--3x²-+-10x-+-6-=-0-(correct-to-TWO-decimal-places)--1.1.2--√(6x²---15)-=-x-+-1--1.1.3--x²-+-2x---24-≥-0-English General-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for x: 1.1.1 3x² + 10x + 6 = 0 (correct to TWO decimal places) 1.1.2 √(6x² - 15) = x + 1 1.1.3 x² + 2x - 24 ≥ 0

Worked Solution & Example Answer:Solve for x: 1.1.1 3x² + 10x + 6 = 0 (correct to TWO decimal places) 1.1.2 √(6x² - 15) = x + 1 1.1.3 x² + 2x - 24 ≥ 0 - English General - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

3x² + 10x + 6 = 0 (correct to TWO decimal places)

96%

114 rated

Answer

To solve the quadratic equation, we will use the quadratic formula given by:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In this case, we have:

  • a = 3, b = 10, c = 6
  • Substituting these values into the formula:

x=10±10243623x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 3 \cdot 6}}{2 \cdot 3}

Calculating the discriminant: b24ac=10072=28b^2 - 4ac = 100 - 72 = 28

Thus, x=10±286=10±276=5±73x = \frac{-10 \pm \sqrt{28}}{6} = \frac{-10 \pm 2\sqrt{7}}{6} = \frac{-5 \pm \sqrt{7}}{3}

This gives us two solutions:

  1. x2.55x \approx -2.55
  2. x0.78x \approx 0.78

Step 2

√(6x² - 15) = x + 1

99%

104 rated

Answer

First, square both sides to eliminate the square root:

6x215=(x+1)26x^2 - 15 = (x + 1)^2

Expanding the right side: 6x215=x2+2x+16x^2 - 15 = x^2 + 2x + 1

Rearranging to bring all terms to one side: 6x2x22x115=06x^2 - x^2 - 2x - 1 - 15 = 0 5x22x16=05x^2 - 2x - 16 = 0

Now, apply the quadratic formula again:

  • a = 5, b = -2, c = -16

x=(2)±(2)245(16)25x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 5 \cdot (-16)}}{2 \cdot 5}

Calculating the discriminant: 4+320=3244 + 320 = 324

So, x=2±1810x = \frac{2 \pm 18}{10}

This gives:

  1. x=2x = 2 (valid since we squared both sides)
  2. x=1.6x = -1.6 (valid as both satisfy the original equation)

Step 3

x² + 2x - 24 ≥ 0

96%

101 rated

Answer

First, let's find the roots of the quadratic equation:

x2+2x24=0x^2 + 2x - 24 = 0

Using the quadratic formula again:

  • a = 1, b = 2, c = -24

x=2±2241(24)21x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-24)}}{2 \cdot 1}

Calculating: 4+96=1004 + 96 = 100

Thus, x=2±102x = \frac{-2 \pm 10}{2}

The roots are:

  1. x=4x = 4
  2. x=6x = -6

Next, we analyze the intervals created by these roots: (-∞, -6), (-6, 4), (4, ∞). By testing points in each interval, we find:

  • The quadratic is greater than or equal to zero in the intervals: (,6](-\infty, -6] and [4,)[4, \infty).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other NSC Mathematics topics to explore

;