Photo AI
Question 10
Guillain–Barré syndrome is a rare disease in which the immune system damages the myelin sheath of neurones. Myelin sheath damage can cause a range of symptoms, for e... show full transcript
Step 1
Answer
The damage to the myelin sheath interrupts the normal transmission of nerve impulses along the neurones. Myelin facilitates saltatory conduction, allowing impulses to pass rapidly from node to node (nodes of Ranvier). When the sheath is damaged, this process is compromised, resulting in slower or disrupted impulse transmission that can lead to muscular paralysis.
Step 2
Answer
Guillain–Barré syndrome can affect the autonomic nervous system, which regulates involuntary functions including heart rate. Damage to the myelin sheath can impair the nerve fibres that control heart rate, leading to irregularities caused by disrupted signals that should regulate heart contractions.
Step 3
Answer
The single-stranded DNA molecules are complementary to the mRNA that codes for the huntingtin protein. When introduced into the patient's system, these molecules bind to the mRNA, inhibiting its translation into protein. This mechanism reduces the amount of huntingtin produced, thus lowering its concentration in the brain.
Step 4
Answer
Firstly, the reduction of huntingtin does not reverse existing damage to the brain caused by the disease. Secondly, the drug may only provide temporary relief without completely stopping the progression of the disease, as the underlying genetic factors leading to the production of the mutant huntingtin protein remain.
Step 5
Answer
Injecting the drug into the cerebrospinal fluid allows for direct delivery to the central nervous system, ensuring that it can bypass the blood-brain barrier, which a pill might not achieve effectively. Additionally, direct injection ensures higher localized concentrations of the drug at the site of action compared to systemic circulation via oral administration.
Step 6
Answer
Epigenetics can influence the expression of genes without altering the DNA sequence. Methylation of the CAG repeat region in the gene for Huntington's can affect how early the gene is expressed and consequently how quickly symptoms manifest. Increased methylation may silence the gene, delaying the onset of symptoms, while decreased methylation may lead to earlier expression and symptom onset.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Biological Molecules: Carbohydrates
Biology - AQA
Biological Molecules: Proteins
Biology - AQA
Proteins: Enzymes
Biology - AQA
Nucleic Acids: Structure & DNA Replication
Biology - AQA
ATP, Water & Inorganic Ions
Biology - AQA
Cell Structure
Biology - AQA
The Microscope in Cell Studies
Biology - AQA
Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
Cell Membranes & Transport
Biology - AQA
Cell Recognition & the Immune System
Biology - AQA
Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
Adaptations for Gas Exchange
Biology - AQA
Human Gas Exchange
Biology - AQA
Mass Transport in Animals
Biology - AQA
The Circulatory System in Animals
Biology - AQA
Mass Transport in Plants
Biology - AQA
DNA, Genes & Chromosomes
Biology - AQA
DNA & Protein Synthesis
Biology - AQA
Genetic Diversity: Mutations & Meiosis
Biology - AQA
Genetic Diversity & Adaptation
Biology - AQA
Species & Taxonomy
Biology - AQA
Biodiversity
Biology - AQA
Photosynthesis
Biology - AQA
Respiration
Biology - AQA
Energy & Ecosystems
Biology - AQA
Nutrient Cycles
Biology - AQA
Response to Stimuli
Biology - AQA
Nervous Coordination
Biology - AQA
Skeletal Muscles
Biology - AQA
Homeostasis
Biology - AQA
Inheritance
Biology - AQA
Populations
Biology - AQA
Evolution
Biology - AQA
Populations in Ecosystems
Biology - AQA
Genetic Mutations
Biology - AQA
Regulation of Gene Expression
Biology - AQA
Gene Technologies
Biology - AQA
1.1 Carbohydrates
Biology - AQA
1.2 Lipids
Biology - AQA
1.3 Proteins
Biology - AQA
1.4 Proteins: Enzymes
Biology - AQA
1.5 Nucleic Acids: Structure & DNA Replication
Biology - AQA
1.6 ATP, Water & Inorganic Ions
Biology - AQA
2.1 Cell Structure
Biology - AQA
2.3 Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
2.4 Cell Membranes & Transport
Biology - AQA
2.5 Cell Recognition & the Immune System
Biology - AQA
2.6 Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
3.1 Adaptations for Gas Exchange
Biology - AQA
3.2 Human Gas Exchange
Biology - AQA
3.3 Digestion & Absorption
Biology - AQA
3.4 Mass Transport in Animals
Biology - AQA
3.5 The Circulatory System in Animals
Biology - AQA
3.6 Mass Transport in Plants
Biology - AQA
4.1 DNA, Genes & Chromosomes
Biology - AQA
4.2 DNA & Protein Synthesis
Biology - AQA
4.3 Genetic Diversity: Mutations & Meiosis
Biology - AQA
4.4 Genetic Diversity & Adaptation
Biology - AQA
4.5 Species & Taxonomy
Biology - AQA
4.6 Biodiversity
Biology - AQA
5.1 Photosynthesis (A Level only)
Biology - AQA
5.2 Respiration (A Level only)
Biology - AQA
5.3 Energy & Ecosystems (A Level only)
Biology - AQA
5.4 Nutrient Cycles (A Level only)
Biology - AQA
6.1 Response to Stimuli (A Level only)
Biology - AQA
6.2 Nervous Coordination (A Level only)
Biology - AQA
6.3 Skeletal Muscles (A Level only)
Biology - AQA
6.4 Homeostasis (A Level only)
Biology - AQA
7.1 Inheritance (A Level only)
Biology - AQA
7.2 Populations (A Level only)
Biology - AQA
7.3 Evolution (A Level only)
Biology - AQA
7.4 Populations in Ecosystems (A Level only)
Biology - AQA
8.1 Genetic Mutations (A Level only)
Biology - AQA
8.2 Regulation of Gene Expression (A Level only)
Biology - AQA
8.3 Using Genome Projects (A Level only)
Biology - AQA
8.4 Gene Technologies (A Level only)
Biology - AQA
Risk Assessment Masterlist
Biology - AQA
Investigating Cell Membrane Permeability
Biology - AQA
Dissection
Biology - AQA
Aseptic Techniques
Biology - AQA
Chromatography of Photosynthetic Pigments
Biology - AQA
Dehydrogenase Activity in Chloroplasts
Biology - AQA
Respiration in Single-Celled Organisms
Biology - AQA
Measuring Concentration of Glucose using a Calibration Curve
Biology - AQA
Effect of Different Variables on Species Distribution
Biology - AQA