Photo AI

Use the data in Table 1 to calculate a value for the electron affinity of chlorine - AQA - A-Level Chemistry - Question 1 - 2020 - Paper 1

Question icon

Question 1

Use-the-data-in-Table-1-to-calculate-a-value-for-the-electron-affinity-of-chlorine-AQA-A-Level Chemistry-Question 1-2020-Paper 1.png

Use the data in Table 1 to calculate a value for the electron affinity of chlorine. Electron affinity ___________ kJ mol⁻¹

Worked Solution & Example Answer:Use the data in Table 1 to calculate a value for the electron affinity of chlorine - AQA - A-Level Chemistry - Question 1 - 2020 - Paper 1

Step 1

Calculate the Electron Affinity of Chlorine

96%

114 rated

Answer

To find the electron affinity of chlorine, we can use Hess's law and the following thermodynamic equation:

ΔHf=ΔHatom(Sr)+ΔHion(Sr)+ΔHatom(Cl)+ΔHaff+ΔHlattice\Delta H_f = \Delta H_{atom}(Sr) + \Delta H_{ion}(Sr) + \Delta H_{atom}(Cl) + \Delta H_{aff} + \Delta H_{lattice}

Substituting the values from Table 1:

  • Enthalpy of formation of strontium chloride, (\Delta H_f = -828 \text{ kJ mol}^{-1})
  • Enthalpy of atomization of strontium, (\Delta H_{atom}(Sr) = +164 \text{ kJ mol}^{-1})
  • First ionization energy of strontium, (\Delta H_{ion}(Sr) = +548 \text{ kJ mol}^{-1})
  • Enthalpy of atomization of chlorine, (\Delta H_{atom}(Cl) = +121 \text{ kJ mol}^{-1})
  • Enthalpy of lattice formation of strontium chloride, (\Delta H_{lattice} = -2112 \text{ kJ mol}^{-1})

The equation can be rearranged to solve for (\Delta H_{aff}):

828=164+548+121+ΔHaff2112-828 = 164 + 548 + 121 + \Delta H_{aff} - 2112

Calculating:

828=164+548+1212112+ΔHaff-828 = 164 + 548 + 121 - 2112 + \Delta H_{aff} 828=1279+ΔHaff-828 = -1279 + \Delta H_{aff}

Thus, we get:

ΔHaff=828+1279=451 kJ mol1\Delta H_{aff} = -828 + 1279 = 451 \text{ kJ mol}^{-1}

Therefore, the electron affinity of chlorine is approximately (-451) kJ mol⁻¹.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;