Photo AI

The acid dissociation constant, K_a, for ethanoic acid is given by the expression $$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$ The value of K_a for ethanoic acid is 1.74 × 10^-5 mol dm^-3 at 25 °C A buffer solution with a pH of 3.87 was prepared using ethanoic acid and sodium ethanoate - AQA - A-Level Chemistry - Question 2 - 2017 - Paper 1

Question icon

Question 2

The-acid-dissociation-constant,-K_a,-for-ethanoic-acid-is-given-by-the-expression--$$K_a-=-\frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$--The-value-of-K_a-for-ethanoic-acid-is-1.74-×-10^-5-mol-dm^-3-at-25-°C--A-buffer-solution-with-a-pH-of-3.87-was-prepared-using-ethanoic-acid-and-sodium-ethanoate-AQA-A-Level Chemistry-Question 2-2017-Paper 1.png

The acid dissociation constant, K_a, for ethanoic acid is given by the expression $$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$ The value of K_a for ethanoic acid ... show full transcript

Worked Solution & Example Answer:The acid dissociation constant, K_a, for ethanoic acid is given by the expression $$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$ The value of K_a for ethanoic acid is 1.74 × 10^-5 mol dm^-3 at 25 °C A buffer solution with a pH of 3.87 was prepared using ethanoic acid and sodium ethanoate - AQA - A-Level Chemistry - Question 2 - 2017 - Paper 1

Step 1

Calculate the concentration of the ethanoic acid in the buffer solution.

96%

114 rated

Answer

To find the concentration of ethanoic acid, we can rearrange the expression for the acid dissociation constant:

Ka=[CH3COO][H+][CH3COOH]K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}

Given:

  • Ka=1.74imes105 mol dm3K_a = 1.74 imes 10^{-5} \text{ mol dm}^{-3}
  • [CH3COO]=0.136 mol dm3[CH_3COO^-] = 0.136 \text{ mol dm}^{-3}
  • Using the formula: [H+]=10pH=103.871.3489×104 mol dm3[H^+] = 10^{-pH} = 10^{-3.87} \approx 1.3489 \times 10^{-4} \text{ mol dm}^{-3}.

Substituting these values into the rearranged formula:

[CH3COOH]=[CH3COO][H+]Ka[CH_3COOH] = \frac{[CH_3COO^-][H^+]}{K_a}

Calculating:

[CH3COOH]=(0.136)(1.3489×104)1.74×1051.05 mol dm3[CH_3COOH] = \frac{(0.136)(1.3489 \times 10^{-4})}{1.74 \times 10^{-5}} \approx 1.05 \text{ mol dm}^{-3}

Thus, the concentration of the ethanoic acid is approximately 1.05 mol dm^-3.

Step 2

Calculate the pH of the buffer solution after the sodium hydroxide was added.

99%

104 rated

Answer

First, determine the moles of ethanoic acid and ethanoate before the addition of NaOH:

  • Moles of ethanoic acid = 0.260 mol dm3×500 cm31000=0.130 mol0.260 \text{ mol dm}^{-3} \times \frac{500 \text{ cm}^3}{1000} = 0.130 \text{ mol}
  • Moles of ethanoate = 0.121 mol dm3×500 cm31000=0.0605 mol0.121 \text{ mol dm}^{-3} \times \frac{500 \text{ cm}^3}{1000} = 0.0605 \text{ mol}

After adding NaOH, which reacts with ethanoic acid:

  • Moles of NaOH added = 7.00×103 mol7.00 \times 10^{-3} \text{ mol}

Reaction:

  • Remaining moles of ethanoic acid = 0.1300.007=0.123 mol0.130 - 0.007 = 0.123 \text{ mol}
  • Moles of ethanoate = 0.0605+0.007=0.0675 mol0.0605 + 0.007 = 0.0675 \text{ mol}

Now, we can calculate the new concentrations:

  • Concentration of ethanoic acid: [CH3COOH]=0.1230.500=0.246 mol dm3[CH_3COOH] = \frac{0.123}{0.500} = 0.246 \text{ mol dm}^{-3}
  • Concentration of ethanoate: [CH3COO]=0.06750.500=0.135 mol dm3[CH_3COO^-] = \frac{0.0675}{0.500} = 0.135 \text{ mol dm}^{-3}

Using the Henderson-Hasselbalch equation: pH=pKa+log[CH3COO][CH3COOH]pH = pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]}

Where:

  • pKa=log(1.74×105)4.76pK_a = -\log(1.74 \times 10^{-5}) \approx 4.76

Substituting values: pH=4.76+log0.1350.2464.760.20814.55pH = 4.76 + \log \frac{0.135}{0.246} \approx 4.76 - 0.2081 \approx 4.55

Thus, the pH of the buffer solution after the sodium hydroxide was added is approximately 4.55.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Chemistry topics to explore

Atomic Structure

Chemistry - AQA

Formulae, Equations & Calculations

Chemistry - AQA

The Mole, Avogadro & The Ideal Gas Equation

Chemistry - AQA

Types of Bonding & Properties

Chemistry - AQA

Molecules: Shapes & Forces

Chemistry - AQA

Energetics

Chemistry - AQA

Kinetics

Chemistry - AQA

Chemical Equilibria, Le Chateliers Principle & Kc

Chemistry - AQA

Oxidation, Reduction & Redox Equations

Chemistry - AQA

Periodicity

Chemistry - AQA

Group 2, the Alkaline Earth Metals

Chemistry - AQA

Group 7 (17), the Halogens

Chemistry - AQA

Introduction to Organic Chemistry

Chemistry - AQA

Alkanes

Chemistry - AQA

Halogenoalkanes

Chemistry - AQA

Alkenes

Chemistry - AQA

Alcohols

Chemistry - AQA

Organic Analysis

Chemistry - AQA

Organic & Inorganic Chemistry Practicals

Chemistry - AQA

Thermodynamics

Chemistry - AQA

Rate Equations

Chemistry - AQA

Equilibrium constant (Kp) for Homogeneous Systems

Chemistry - AQA

Electrode Potentials & Electrochemical Cells

Chemistry - AQA

Fundamentals of Acids & Bases

Chemistry - AQA

Further Acids & Bases Calculations

Chemistry - AQA

Properties of Period 3 Elements & their Oxides

Chemistry - AQA

Transition Metals

Chemistry - AQA

Reactions of Ions in Aqueous Solution

Chemistry - AQA

Optical Isomerism

Chemistry - AQA

Aldehydes & Ketones

Chemistry - AQA

Carboxylic Acids & Derivatives

Chemistry - AQA

Aromatic Chemistry

Chemistry - AQA

Amines

Chemistry - AQA

Polymers

Chemistry - AQA

Amino acids, Proteins & DNA

Chemistry - AQA

Organic Synthesis

Chemistry - AQA

Organic Mechanisms

Chemistry - AQA

Nuclear Magnetic Resonance Spectroscopy

Chemistry - AQA

Chromatography

Chemistry - AQA

Physical Chemistry Practicals

Chemistry - AQA

Organic Chemistry Practicals

Chemistry - AQA

;