Photo AI

The rate constant, k, for a reaction varies with temperature as shown by the equation $$k = Ae^{-E_a/RT}$$ For this reaction, at 25 °C, k = 3.46 × 10⁻⁵ s⁻¹ The activation energy $E_a = 96.2 \, kJ \ mol^{-1}$ The gas constant $R = 8.31 \, J \ K^{-1} \ mol^{-1}$ Calculate a value for the Arrhenius constant, A, for this reaction - AQA - A-Level Chemistry - Question 5 - 2019 - Paper 2

Question icon

Question 5

The-rate-constant,-k,-for-a-reaction-varies-with-temperature-as-shown-by-the-equation--$$k-=-Ae^{-E_a/RT}$$--For-this-reaction,-at-25-°C,-k-=-3.46-×-10⁻⁵-s⁻¹-The-activation-energy-$E_a-=-96.2-\,-kJ-\-mol^{-1}$-The-gas-constant-$R-=-8.31-\,-J-\-K^{-1}-\-mol^{-1}$--Calculate-a-value-for-the-Arrhenius-constant,-A,-for-this-reaction-AQA-A-Level Chemistry-Question 5-2019-Paper 2.png

The rate constant, k, for a reaction varies with temperature as shown by the equation $$k = Ae^{-E_a/RT}$$ For this reaction, at 25 °C, k = 3.46 × 10⁻⁵ s⁻¹ The act... show full transcript

Worked Solution & Example Answer:The rate constant, k, for a reaction varies with temperature as shown by the equation $$k = Ae^{-E_a/RT}$$ For this reaction, at 25 °C, k = 3.46 × 10⁻⁵ s⁻¹ The activation energy $E_a = 96.2 \, kJ \ mol^{-1}$ The gas constant $R = 8.31 \, J \ K^{-1} \ mol^{-1}$ Calculate a value for the Arrhenius constant, A, for this reaction - AQA - A-Level Chemistry - Question 5 - 2019 - Paper 2

Step 1

Calculate A using the Arrhenius equation

96%

114 rated

Answer

We start with the Arrhenius equation:

k=AeEa/RTk = Ae^{-E_a/RT}

To find A, we rearrange the equation:

A=keEa/RTA = k e^{E_a/RT}

Now we plug in the values:

  1. Convert activation energy EaE_a to J/mol: Ea=96.2kJ mol1=96200J mol1E_a = 96.2 \, kJ \ mol^{-1} = 96200 \, J \ mol^{-1}

  2. Convert temperature from Celsius to Kelvin: T=25°C=298 KT = 25 °C = 298 \ K

  3. Plug in the values to find A:

    • Using k=3.46×105s1k = 3.46 × 10^{-5} \, s^{-1} and R=8.31J K1 mol1R = 8.31 \, J \ K^{-1} \ mol^{-1}:

    A=3.46×105s1×e962008.31imes298A = 3.46 \times 10^{-5} \, s^{-1} \times e^{\frac{96200}{8.31 imes 298}}

    • Calculate the exponent:

    e96200(8.31)(298)=e39.074.32×1017e^{\frac{96200}{(8.31)(298)}} = e^{39.07} \approx 4.32 \times 10^{17}

    • Thus,

    A=3.46×105×4.32×101714997856001.5×109s1A = 3.46 \times 10^{-5} \times 4.32 \times 10^{17} \approx 1499785600 \approx 1.5 \times 10^{9} \, s^{-1}

Step 2

Give the units for A

99%

104 rated

Answer

The units for the Arrhenius constant A can be derived from the rate constant, k. Since k has the units of s1s^{-1}, and we multiplied it by a dimensionless exponential term, the units for A remain the same:

Units of A=s1\text{Units of A} = s^{-1}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;