Photo AI

Prove the identity $$ ext{cot}^2 heta - ext{cos}^2 heta = ext{cot}^2 heta ext{cos}^2 heta$$ - AQA - A-Level Maths Mechanics - Question 13 - 2017 - Paper 1

Question icon

Question 13

Prove-the-identity-$$-ext{cot}^2--heta----ext{cos}^2--heta-=--ext{cot}^2--heta--ext{cos}^2--heta$$-AQA-A-Level Maths Mechanics-Question 13-2017-Paper 1.png

Prove the identity $$ ext{cot}^2 heta - ext{cos}^2 heta = ext{cot}^2 heta ext{cos}^2 heta$$

Worked Solution & Example Answer:Prove the identity $$ ext{cot}^2 heta - ext{cos}^2 heta = ext{cot}^2 heta ext{cos}^2 heta$$ - AQA - A-Level Maths Mechanics - Question 13 - 2017 - Paper 1

Step 1

Recall a trigonometric identity

96%

114 rated

Answer

We start with the left-hand side (LHS) of the equation:

extcot2hetaextcos2heta ext{cot}^2 heta - ext{cos}^2 heta

Recall that: extcotheta=extcoshetaextsinheta ext{cot} heta = \frac{ ext{cos} heta}{ ext{sin} heta}

Thus, extcot2heta=extcos2hetaextsin2heta ext{cot}^2 heta = \frac{ ext{cos}^2 heta}{ ext{sin}^2 heta}.

Step 2

Perform algebraic manipulation

99%

104 rated

Answer

Substituting into LHS gives:

extcos2hetaextsin2hetaextcos2heta\frac{ ext{cos}^2 heta}{ ext{sin}^2 heta} - ext{cos}^2 heta

To combine these, express the second term with a common denominator:

=extcos2hetaextsin2hetaextcos2hetaextsin2hetaextsin2heta= \frac{ ext{cos}^2 heta}{ ext{sin}^2 heta} - \frac{ ext{cos}^2 heta ext{sin}^2 heta}{ ext{sin}^2 heta}

This simplifies to:

=extcos2hetaextcos2hetaextsin2hetaextsin2heta= \frac{ ext{cos}^2 heta - ext{cos}^2 heta ext{sin}^2 heta}{ ext{sin}^2 heta}.

Step 3

Conclude with a rigorous mathematical argument

96%

101 rated

Answer

Factor out ext{cos}^2 heta:

=extcos2heta(1extsin2heta)extsin2heta= \frac{ ext{cos}^2 heta(1 - ext{sin}^2 heta)}{ ext{sin}^2 heta}

Using the identity 1extsin2heta=extcos2heta1 - ext{sin}^2 heta = ext{cos}^2 heta, we get:

=extcos2hetaextcos2hetaextsin2heta= \frac{ ext{cos}^2 heta ext{cos}^2 heta}{ ext{sin}^2 heta}

Which is the same as:

=extcot2hetaextcos2heta= ext{cot}^2 heta ext{cos}^2 heta

Thus, extcot2hetaextcos2heta=extcot2hetaextcos2heta ext{cot}^2 heta - ext{cos}^2 heta = ext{cot}^2 heta ext{cos}^2 heta

This completes the proof.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;