Photo AI

8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ - AQA - A-Level Maths Mechanics - Question 8 - 2018 - Paper 3

Question icon

Question 8

8-(a)-Prove-the-identity--$$\frac{\sin-2x}{1-+-\tan^2-x}-=-2-\sin-x-\cos^3-x$$--8-(b)-Hence-find--$$\int-\frac{4-\sin-4\theta}{1-+-\tan^2-2\theta}-d\theta$$-AQA-A-Level Maths Mechanics-Question 8-2018-Paper 3.png

8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$

Worked Solution & Example Answer:8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ - AQA - A-Level Maths Mechanics - Question 8 - 2018 - Paper 3

Step 1

Prove the identity

96%

114 rated

Answer

To prove the identity, we start by examining the left-hand side:

sin2x1+tan2x\frac{\sin 2x}{1 + \tan^2 x}

We can use the identity for ( \sin 2x = 2 \sin x \cos x ) to rewrite the numerator:

2sinxcosx1+tan2x\frac{2 \sin x \cos x}{1 + \tan^2 x}

Next, using the identity ( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} ), we have:

1+tan2x=1+sin2xcos2x=cos2x+sin2xcos2x=1cos2x1 + \tan^2 x = 1 + \frac{\sin^2 x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}

Thus, we can rewrite the denominator as:

sin2x1cos2x=2sinxcosxcos2x=2sinxcos3x\frac{\sin 2x}{\frac{1}{\cos^2 x}} = 2 \sin x \cos x \cdot \cos^2 x = 2 \sin x \cos^3 x

This shows that:

sin2x1+tan2x=2sinxcos3x\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x

Now, for the right-hand side:

Since both sides are equal, we conclude that:

LHS=RHS\text{LHS} = \text{RHS}

Step 2

Hence find

99%

104 rated

Answer

Using the identity proven in part (a), we rewrite the integral:

4sin4θ1+tan22θdθ\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta

Using the identity tan22θ=sin22θcos22θ\tan^2 2\theta = \frac{\sin^2 2\theta}{\cos^2 2\theta}, we can simplify the denominator:

Thus, we can express this as:

1+tan22θ=1cos22θ1 + \tan^2 2\theta = \frac{1}{\cos^2 2\theta}

Now substituting:

4sin4θcos22θdθ\int 4 \sin 4\theta \cos^2 2\theta d\theta

Next, we can use the substitution, letting ( u = \cos 2\theta ), then ( du = -2 \sin 2\theta d\theta ), which converts the integral to:

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;