Photo AI

12 (a) Show that the equation $$2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x$$ can be written in the form a \csc^2 x + b \csc x + c = 0 12 (b) Hence, given x is obtuse and $$2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x$$ find the exact value of \tan x - AQA - A-Level Maths Mechanics - Question 12 - 2019 - Paper 1

Question icon

Question 12

12-(a)-Show-that-the-equation--$$2-\cot^2-x-+-2-\csc^2-x-=-1-+-4-\csc-x$$--can-be-written-in-the-form--a-\csc^2-x-+-b-\csc-x-+-c-=-0--12-(b)-Hence,-given-x-is-obtuse-and--$$2-\cot^2-x-+-2-\csc^2-x-=-1-+-4-\csc-x$$--find-the-exact-value-of-\tan-x-AQA-A-Level Maths Mechanics-Question 12-2019-Paper 1.png

12 (a) Show that the equation $$2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x$$ can be written in the form a \csc^2 x + b \csc x + c = 0 12 (b) Hence, given x is obtuse... show full transcript

Worked Solution & Example Answer:12 (a) Show that the equation $$2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x$$ can be written in the form a \csc^2 x + b \csc x + c = 0 12 (b) Hence, given x is obtuse and $$2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x$$ find the exact value of \tan x - AQA - A-Level Maths Mechanics - Question 12 - 2019 - Paper 1

Step 1

Show that the equation can be written in the form a \csc^2 x + b \csc x + c = 0

96%

114 rated

Answer

To show that the equation can be rewritten in the desired form, we start with:

2cot2x+2csc2x=1+4cscx2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x

Using the identity ( \cot^2 x + 1 = \csc^2 x ), we can rewrite ( \cot^2 x ) in terms of ( \csc^2 x ):

2(csc2x1)+2csc2x=1+4cscx2(\csc^2 x - 1) + 2\csc^2 x = 1 + 4\csc x

Simplifying this gives:

2csc2x2+2csc2x=1+4cscx2\csc^2 x - 2 + 2\csc^2 x = 1 + 4\csc x

Combining like terms, we have:

4csc2x4cscx3=04\csc^2 x - 4\csc x - 3 = 0

Here, comparing with the required form, we identify:

a = 4, b = -4, c = -3.

Step 2

Hence, given x is obtuse and find the exact value of tan x.

99%

104 rated

Answer

Given that x is obtuse, we know that ( \csc x \geq 1 ), and that thus:

From our earlier equation:

4csc2x4cscx3=04\csc^2 x - 4\csc x - 3 = 0

We can solve this quadratic equation for ( \csc x ) using the quadratic formula:

cscx=b±b24ac2a\csc x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting in the values:

cscx=(4)±(4)244(3)24=4±16+488=4±648=4±88\csc x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4} = \frac{4 \pm \sqrt{16 + 48}}{8} = \frac{4 \pm \sqrt{64}}{8} = \frac{4 \pm 8}{8}

This gives:

cscx=128=32orcscx=48=12(reject as cscx1\csc x = \frac{12}{8} = \frac{3}{2} \quad \text{or} \quad \csc x = \frac{-4}{8} = -\frac{1}{2}\, \text{(reject as } |csc x| \ge 1 \text{) }

Thus, ( \csc x = \frac{3}{2} ). Therefore, the value of ( \sin x = \frac{2}{3} ) and since x is obtuse, we find:

tanx=sinxcosxwhere cos2x=1sin2x=1(23)2=59    cosx=53\tan x = \frac{\sin x}{\cos x} \quad \text{where } \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{2}{3}\right)^2 = \frac{5}{9} \implies \cos x = -\frac{\sqrt{5}}{3}

Thus:

tanx=2353=25=25=255 \tan x = \frac{\frac{2}{3}}{-\frac{\sqrt{5}}{3}} = \frac{2}{-\sqrt{5}} = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;