Photo AI

Four buoys on the surface of a large, calm lake are located at A, B, C and D with position vectors given by $$\vec{OA} = \begin{pmatrix} 410 \\ 710 \end{pmatrix}, \vec{OB} = \begin{pmatrix} -210 \\ 530 \end{pmatrix}, \vec{OC} = \begin{pmatrix} -340 \\ -310 \end{pmatrix} \text{ and } \vec{OD} = \begin{pmatrix} -590 \\ -40 \end{pmatrix}$$ All values are in metres - AQA - A-Level Maths Mechanics - Question 15 - 2019 - Paper 2

Question icon

Question 15

Four-buoys-on-the-surface-of-a-large,-calm-lake-are-located-at-A,-B,-C-and-D-with-position-vectors-given-by--$$\vec{OA}-=-\begin{pmatrix}-410-\\-710-\end{pmatrix},-\vec{OB}-=-\begin{pmatrix}--210-\\-530-\end{pmatrix},-\vec{OC}-=-\begin{pmatrix}--340-\\--310-\end{pmatrix}-\text{-and-}-\vec{OD}-=-\begin{pmatrix}--590-\\--40-\end{pmatrix}$$--All-values-are-in-metres-AQA-A-Level Maths Mechanics-Question 15-2019-Paper 2.png

Four buoys on the surface of a large, calm lake are located at A, B, C and D with position vectors given by $$\vec{OA} = \begin{pmatrix} 410 \\ 710 \end{pmatrix}, \... show full transcript

Worked Solution & Example Answer:Four buoys on the surface of a large, calm lake are located at A, B, C and D with position vectors given by $$\vec{OA} = \begin{pmatrix} 410 \\ 710 \end{pmatrix}, \vec{OB} = \begin{pmatrix} -210 \\ 530 \end{pmatrix}, \vec{OC} = \begin{pmatrix} -340 \\ -310 \end{pmatrix} \text{ and } \vec{OD} = \begin{pmatrix} -590 \\ -40 \end{pmatrix}$$ All values are in metres - AQA - A-Level Maths Mechanics - Question 15 - 2019 - Paper 2

Step 1

Prove that the quadrilateral ABCD is a trapezium but not a parallelogram.

96%

114 rated

Answer

To determine if quadrilateral ABCD is a trapezium, we need to find the vectors for each side:

  1. Calculate Vectors AB, BC, CD, and DA:

    • ( \vec{AB} = \vec{OB} - \vec{OA} = \begin{pmatrix} -210 \ 530 \end{pmatrix} - \begin{pmatrix} 410 \ 710 \end{pmatrix} = \begin{pmatrix} -620 \ -180 \end{pmatrix} )
    • ( \vec{BC} = \vec{OC} - \vec{OB} = \begin{pmatrix} -340 \ -310 \end{pmatrix} - \begin{pmatrix} -210 \ 530 \end{pmatrix} = \begin{pmatrix} -130 \ -840 \end{pmatrix} )
    • ( \vec{CD} = \vec{OD} - \vec{OC} = \begin{pmatrix} -590 \ -40 \end{pmatrix} - \begin{pmatrix} -340 \ -310 \end{pmatrix} = \begin{pmatrix} -250 \ 270 \end{pmatrix} )
    • ( \vec{DA} = \vec{OA} - \vec{OD} = \begin{pmatrix} 410 \ 710 \end{pmatrix} - \begin{pmatrix} -590 \ -40 \end{pmatrix} = \begin{pmatrix} 1000 \ 750 \end{pmatrix} )
  2. Find Gradients of AB and CD:

    • Gradient of AB: ( \frac{-180}{-620} = \frac{3}{31} )
    • Gradient of CD: ( \frac{270}{-250} = -\frac{27}{25} )
  3. Check for Parallelism: Since the gradients of AB and CD are not equal, we conclude that AB and CD are not parallel.

  4. Find Gradients of BC and DA:

    • Gradient of BC: ( \frac{-840}{-130} = \frac{84}{13} )
    • Gradient of DA: ( \frac{750}{1000} = \frac{3}{4} )
  5. Final Conclusion:

    • Since AB is parallel to CD but not equal in length, ABCD qualifies as a trapezium.
    • As AB and CD are not equal in length, ABCD is not a parallelogram.

Step 2

Find the speed of the boat between B and C.

99%

104 rated

Answer

The distance the boat travels from B to C can be calculated using the vector BC:

  • [ \vec{BC} = \begin{pmatrix} -130 \ -840 \end{pmatrix} ]
  • The magnitude of vector BC (distance) is given by:

BC=(130)2+(840)2=16900+705600=722500=850metres|\vec{BC}| = \sqrt{(-130)^2 + (-840)^2} = \sqrt{16900 + 705600} = \sqrt{722500} = 850 \, \text{metres}

Since the speed of the boat is calculated as:

  • [ \text{Speed} = \frac{\text{Distance}}{\text{Time}} ]
  • Given that the boat travels this distance in 50 seconds:

Speed=85050=17m/s\text{Speed} = \frac{850}{50} = 17 \, \text{m/s}

Thus, the speed of the boat between B and C is 17 m/s.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;