Photo AI

For cos θ ≠ 0, prove that cosec 2θ + cot 2θ = cot θ 9 (b) Explain why cot θ ≠ cosec 2θ + cot 2θ when cos θ = 0 - AQA - A-Level Maths Mechanics - Question 9 - 2020 - Paper 3

Question icon

Question 9

For-cos-θ-≠-0,-prove-that--cosec-2θ-+-cot-2θ-=-cot-θ---9-(b)-Explain-why--cot-θ-≠-cosec-2θ-+-cot-2θ--when-cos-θ-=-0-AQA-A-Level Maths Mechanics-Question 9-2020-Paper 3.png

For cos θ ≠ 0, prove that cosec 2θ + cot 2θ = cot θ 9 (b) Explain why cot θ ≠ cosec 2θ + cot 2θ when cos θ = 0

Worked Solution & Example Answer:For cos θ ≠ 0, prove that cosec 2θ + cot 2θ = cot θ 9 (b) Explain why cot θ ≠ cosec 2θ + cot 2θ when cos θ = 0 - AQA - A-Level Maths Mechanics - Question 9 - 2020 - Paper 3

Step 1

Prove that cosec 2θ + cot 2θ = cot θ

96%

114 rated

Answer

To prove the identity, we start by recalling the definitions of the cosecant and cotangent:

  • Cosec 2θ is defined as: cosec 2θ=1sin2θ=12sinθcosθ\text{cosec } 2\theta = \frac{1}{\sin 2\theta} = \frac{1}{2\sin \theta \cos \theta}
  • Cot 2θ is defined as: cot 2θ=cos2θsin2θ=cos2θsin2θ2sinθcosθ\text{cot } 2\theta = \frac{\cos 2\theta}{\sin 2\theta} = \frac{\cos^{2} \theta - \sin^{2} \theta}{2\sin \theta \cos \theta}

Substituting these identities into the left hand side gives:

cosec 2θ+cot 2θ=12sinθcosθ+cos2θsin2θ2sinθcosθ\text{cosec } 2\theta + \text{cot } 2\theta = \frac{1}{2\sin \theta \cos \theta} + \frac{\cos^{2} \theta - \sin^{2} \theta}{2\sin \theta \cos \theta}

Combining the terms: =1+cos2θsin2θ2sinθcosθ= \frac{1 + \cos^{2} \theta - \sin^{2} \theta}{2\sin \theta \cos \theta}
Using the identity (1 = \sin^{2} \theta + \cos^{2} \theta), we further simplify to: =(sin2θ+2cos2θ)2sinθcosθ= \frac{(\sin^{2} \theta + 2\cos^{2} \theta)}{2\sin \theta \cos \theta}

Thus, =2cos2θ2sinθcosθ=cosθsinθ=cot θ= \frac{2\cos^{2} \theta}{2\sin \theta \cos \theta} = \frac{\cos \theta}{\sin \theta} = \text{cot } \theta

This proves the identity.

Step 2

Explain why cot θ ≠ cosec 2θ + cot 2θ when cos θ = 0

99%

104 rated

Answer

When cos θ = 0, it indicates that θ is equal to (n + 0.5)π for any integer n.

At these values:

  • Cosec 2θ and cot 2θ will both be undefined since:
    • Cosecant is defined as (\frac{1}{\sin 2\theta}) which approaches infinity when sin 2θ = 0.
    • Cotangent is defined as (\frac{\cos 2\theta}{\sin 2\theta}) which will also be undefined. Thus, the left-hand side cannot equal the right-hand side because when cos θ = 0:
  • cot θ is undefined
  • cosec 2θ and cot 2θ are both undefined. Therefore, a comparison shows that neither side holds a defined value.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;