To prove the identity, we start by recalling the definitions of the cosecant and cotangent:
- Cosec 2θ is defined as:
cosec 2θ=sin2θ1=2sinθcosθ1
- Cot 2θ is defined as:
cot 2θ=sin2θcos2θ=2sinθcosθcos2θ−sin2θ
Substituting these identities into the left hand side gives:
cosec 2θ+cot 2θ=2sinθcosθ1+2sinθcosθcos2θ−sin2θ
Combining the terms:
=2sinθcosθ1+cos2θ−sin2θ
Using the identity (1 = \sin^{2} \theta + \cos^{2} \theta), we further simplify to:
=2sinθcosθ(sin2θ+2cos2θ)
Thus,
=2sinθcosθ2cos2θ=sinθcosθ=cot θ
This proves the identity.