Photo AI

A function $f$ has domain $ ext{R}$ and range $ ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{ extgreater} ext{e}$ - AQA - A-Level Maths Mechanics - Question 7 - 2018 - Paper 2

Question icon

Question 7

A-function-$f$-has-domain-$-ext{R}$-and-range-$-ext{y}--ext{-}--ext{-}--ext{-}--ext{y}--ext{-}--ext{-}--ext{-}--ext{y}--ext{-}--ext{-}--ext{-}--ext{-extgreater}--ext{e}$-AQA-A-Level Maths Mechanics-Question 7-2018-Paper 2.png

A function $f$ has domain $ ext{R}$ and range $ ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{ extgreater} ext... show full transcript

Worked Solution & Example Answer:A function $f$ has domain $ ext{R}$ and range $ ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{y} ext{ } ext{ } ext{ } ext{ extgreater} ext{e}$ - AQA - A-Level Maths Mechanics - Question 7 - 2018 - Paper 2

Step 1

Integrate using integration by parts

96%

114 rated

Answer

To find f(x)f(x), we start from the gradient expression: dydx=(x1)ex.\frac{dy}{dx} = (x-1)e^{x}.
Using integration by parts, let:

  • u=(x1)u = (x-1), then du=dxdu = dx, and
  • dv=exdxdv = e^{x}dx, then v=exv = e^{x}.

The integration by parts formula is: udv=uvvdu.\int u \, dv = uv - \int v \, du.

Substituting in, we get: f(x)=(x1)exexdx=(x1)exex+C=xex2ex+C,f(x) = (x-1)e^{x} - \int e^{x} \, dx = (x-1)e^{x} - e^{x} + C = xe^{x} - 2e^{x} + C,
where CC is the constant of integration.

Step 2

Justify the minimum y value

99%

104 rated

Answer

Next, we need to use the information about the minimum value of the function. From the expression for rac{dy}{dx}, we set: dydx=0(x1)ex=0.\frac{dy}{dx} = 0 \Rightarrow (x-1)e^{x} = 0.
Since exe^{x} is never zero, we find: x1=0x=1.x - 1 = 0 \Rightarrow x = 1.
Now substituting x=1x = 1 into our expression for f(x)f(x) gives: f(1)=(1)e12e1+C=e2e+C=e+C.f(1) = (1)e^{1} - 2e^{1} + C = e - 2e + C = -e + C.

The range of f(x)f(x) specifies that the minimum value is at least ee, thus: e+C=eC=2e.-e + C = e \Rightarrow C = 2e.

Step 3

Final expression for f(x)

96%

101 rated

Answer

Finally, substituting the value of CC back into our expression for f(x)f(x) gives: f(x)=xex2ex+2e,f(x) = xe^{x} - 2e^{x} + 2e, completing the solution.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;