Photo AI

A function $f$ is defined by $$f(x) = \frac{-x}{\sqrt{2x - 2}}$$ - AQA - A-Level Maths Mechanics - Question 6 - 2018 - Paper 3

Question icon

Question 6

A-function-$f$-is-defined-by--$$f(x)-=-\frac{-x}{\sqrt{2x---2}}$$-AQA-A-Level Maths Mechanics-Question 6-2018-Paper 3.png

A function $f$ is defined by $$f(x) = \frac{-x}{\sqrt{2x - 2}}$$. 6 (a) State the maximum possible domain of $f$. 6 (b) Use the quotient rule to show that $f'(x) ... show full transcript

Worked Solution & Example Answer:A function $f$ is defined by $$f(x) = \frac{-x}{\sqrt{2x - 2}}$$ - AQA - A-Level Maths Mechanics - Question 6 - 2018 - Paper 3

Step 1

State the maximum possible domain of f.

96%

114 rated

Answer

To determine the maximum possible domain of the function f(x)=x2x2f(x) = \frac{-x}{\sqrt{2x - 2}}, we need to ensure that the expression under the square root is non-negative.

  1. Set the expression inside the square root greater than zero: 2x2>02x - 2 > 0 Solving this inequality: 2x>2    x>12x > 2 \implies x > 1

  2. Since the square root is in the denominator, we must also ensure that it is not zero: 2x20    x12x - 2 \neq 0 \implies x \neq 1

  3. Therefore, combining these conditions, the maximum possible domain of ff is: x>1, or in interval notation: (1,).x > 1, \text{ or in interval notation: } (1, \infty).

Step 2

Use the quotient rule to show that f'(x) = \frac{-x - 2}{(2x - 2)^{\frac{3}{2}}}

99%

104 rated

Answer

To differentiate the function f(x)=x2x2f(x) = \frac{-x}{\sqrt{2x - 2}}, we will use the quotient rule, which states: (uv)=uvuvv2\left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} where u=xu = -x and v=2x2v = \sqrt{2x - 2}.

  1. First, find the derivatives uu' and vv':

    • u=1u' = -1
    • To differentiate v=(2x2)12v = (2x - 2)^{\frac{1}{2}}, use the chain rule: v=12(2x2)122=12x2v' = \frac{1}{2}(2x - 2)^{-\frac{1}{2}} \cdot 2 = \frac{1}{\sqrt{2x - 2}}
  2. Substitute into the quotient rule formula: f(x)=(1)2x2(x)12x2(2x2)2f'(x) = \frac{(-1) \cdot \sqrt{2x - 2} - (-x) \cdot \frac{1}{\sqrt{2x - 2}}}{(\sqrt{2x - 2})^2}

  3. Simplifying the numerator: f(x)=2x2+x2x22x2f'(x) = \frac{-\sqrt{2x - 2} + \frac{x}{\sqrt{2x - 2}}}{2x - 2} =2x2+x2x22x2= \frac{-\sqrt{2x - 2} + \frac{x}{\sqrt{2x - 2}}}{2x - 2} =(2x2)+x2x22x2= \frac{-\frac{(2x - 2) + x}{\sqrt{2x - 2}}}{2x - 2} =x2(2x2)32= \frac{-x - 2}{(2x - 2)^{\frac{3}{2}}}

Thus, we have shown that: f(x)=x2(2x2)32.f'(x) = \frac{-x - 2}{(2x - 2)^{\frac{3}{2}}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;