Photo AI

A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N - AQA - A-Level Maths Mechanics - Question 11 - 2020 - Paper 2

Question icon

Question 11

A-number-of-forces-act-on-a-particle-such-that-the-resultant-force-is-\(-\begin{pmatrix}-6-\\--3-\end{pmatrix}-\)-N-AQA-A-Level Maths Mechanics-Question 11-2020-Paper 2.png

A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N. One of the forces acting on the particle is \( ... show full transcript

Worked Solution & Example Answer:A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N - AQA - A-Level Maths Mechanics - Question 11 - 2020 - Paper 2

Step 1

Calculate the total of the other forces acting on the particle.

96%

114 rated

Answer

To find the total of the other forces acting on the particle, we can use the equation:

Resultant Force=Other Forces+Given Force\text{Resultant Force} = \text{Other Forces} + \text{Given Force}

Rearranging gives:

Other Forces=Resultant ForceGiven Force\text{Other Forces} = \text{Resultant Force} - \text{Given Force}

Substituting the values:

Other Forces=(63)(85)=(683+5)=(22)\text{Other Forces} = \begin{pmatrix} 6 \\ -3 \end{pmatrix} - \begin{pmatrix} 8 \\ -5 \end{pmatrix} = \begin{pmatrix} 6 - 8 \\ -3 + 5 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}

Thus, the total of the other forces acting on the particle is ( \begin{pmatrix} -2 \ 2 \end{pmatrix} ) N.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;