Photo AI

A particle is moving such that its position vector, r metres, at time t seconds, is given by $$ extbf{r} = e^t ext{cos} ext{ } t extbf{i} + e^t ext{sin} ext{ } t extbf{j} $$ Show that the magnitude of the acceleration of the particle, a ms$^{-2}$, is given by a = 2e^t Fully justify your answer. - AQA - A-Level Maths Pure - Question 17 - 2022 - Paper 2

Question icon

Question 17

A-particle-is-moving-such-that-its-position-vector,-r-metres,-at-time-t-seconds,-is-given-by--$$--extbf{r}-=-e^t--ext{cos}--ext{-}-t--extbf{i}-+-e^t--ext{sin}--ext{-}-t--extbf{j}-$$--Show-that-the-magnitude-of-the-acceleration-of-the-particle,-a-ms$^{-2}$,-is-given-by--a-=-2e^t--Fully-justify-your-answer.-AQA-A-Level Maths Pure-Question 17-2022-Paper 2.png

A particle is moving such that its position vector, r metres, at time t seconds, is given by $$ extbf{r} = e^t ext{cos} ext{ } t extbf{i} + e^t ext{sin} ext{ ... show full transcript

Worked Solution & Example Answer:A particle is moving such that its position vector, r metres, at time t seconds, is given by $$ extbf{r} = e^t ext{cos} ext{ } t extbf{i} + e^t ext{sin} ext{ } t extbf{j} $$ Show that the magnitude of the acceleration of the particle, a ms$^{-2}$, is given by a = 2e^t Fully justify your answer. - AQA - A-Level Maths Pure - Question 17 - 2022 - Paper 2

Step 1

Find the velocity of the particle, v

96%

114 rated

Answer

To find the velocity, we need the derivative of the position vector with respect to time:

extbf{v} = rac{d extbf{r}}{dt} = rac{d}{dt}(e^t ext{cos} ext{ } t) extbf{i} + rac{d}{dt}(e^t ext{sin} ext{ } t) extbf{j}

Using the product rule:

rac{d}{dt}(u imes v) = u'v + uv'

where u=etu = e^t, v=extcosexttv = ext{cos} ext{ } t for the first component, and similar for the second component.

Thus, we get:

extbfv=(etextcosexttetextsinextt)extbfi+(etextsinextt+etextcosextt)extbfj extbf{v} = (e^t ext{cos} ext{ } t - e^t ext{sin} ext{ } t) extbf{i} + (e^t ext{sin} ext{ } t + e^t ext{cos} ext{ } t) extbf{j}

Step 2

Find the acceleration of the particle, a

99%

104 rated

Answer

Now we differentiate the velocity vector to find the acceleration:

extbf{a} = rac{d extbf{v}}{dt} = rac{d}{dt}((e^t ext{cos} ext{ } t - e^t ext{sin} ext{ } t) extbf{i} + (e^t ext{sin} ext{ } t + e^t ext{cos} ext{ } t) extbf{j})

Applying the product rule again:

extbfa=((etextcosexttetextsinextt)+(etextcosexttetextsinextt))extbfi+((etextsinextt+etextcosextt)+(etextsinextt+etextcosextt))extbfj extbf{a} = ((e^t ext{cos} ext{ } t - e^t ext{sin} ext{ } t) + (e^t ext{cos} ext{ } t - e^t ext{sin} ext{ } t)) extbf{i} + ((e^t ext{sin} ext{ } t + e^t ext{cos} ext{ } t) + (e^t ext{sin} ext{ } t + e^t ext{cos} ext{ } t)) extbf{j}

Thus, we have:

extbfa=2etextbfi+2etextbfj extbf{a} = 2e^t extbf{i} + 2e^t extbf{j}

Step 3

Show the magnitude of the acceleration, |a|

96%

101 rated

Answer

To find the magnitude of the acceleration vector:

extbfa=extsqrt((2et)2+(2et)2)| extbf{a}| = ext{sqrt}((2e^t)^2 + (2e^t)^2)

Calculating this gives:

extbfa=extsqrt(4e2t+4e2t)=extsqrt(8e2t)=2extsqrt(2)et| extbf{a}| = ext{sqrt}(4e^{2t} + 4e^{2t}) = ext{sqrt}(8e^{2t}) = 2 ext{sqrt}(2)e^t

However, for the specific form required:

Since the question states the magnitude is given by:

a = 2e^t

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;