Photo AI

A quadrilateral has vertices A, B, C and D with position vectors given by $$ \vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \quad \vec{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \quad \vec{OD} = \begin{bmatrix} -4 \\ 10 \\ 0 \end{bmatrix} $$ 14 (a) Write down the vector \( \vec{AB} \) - AQA - A-Level Maths: Pure - Question 14 - 2018 - Paper 2

Question icon

Question 14

A-quadrilateral-has-vertices-A,-B,-C-and-D-with-position-vectors-given-by--$$-\vec{OA}-=-\begin{bmatrix}-3-\\-5-\\-\end{bmatrix},-\quad-\vec{OB}-=-\begin{bmatrix}--1-\\-2-\\-7-\end{bmatrix},-\quad-\vec{OC}-=-\begin{bmatrix}-0-\\-7-\\-6-\end{bmatrix}-\text{-and-}-\quad-\vec{OD}-=-\begin{bmatrix}--4-\\-10-\\-0-\end{bmatrix}-$$--14-(a)-Write-down-the-vector-\(-\vec{AB}-\)-AQA-A-Level Maths: Pure-Question 14-2018-Paper 2.png

A quadrilateral has vertices A, B, C and D with position vectors given by $$ \vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1... show full transcript

Worked Solution & Example Answer:A quadrilateral has vertices A, B, C and D with position vectors given by $$ \vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \quad \vec{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \quad \vec{OD} = \begin{bmatrix} -4 \\ 10 \\ 0 \end{bmatrix} $$ 14 (a) Write down the vector \( \vec{AB} \) - AQA - A-Level Maths: Pure - Question 14 - 2018 - Paper 2

Step 1

Write down the vector \( \vec{AB} \)

96%

114 rated

Answer

To find the vector ( \vec{AB} ), we can use the position vectors of points A and B:

AB⃗=B⃗−A⃗=[−127]−[35]=[−1−32−57−0]=[−4−36]\vec{AB} = \vec{B} - \vec{A} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix} - \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix} = \begin{bmatrix} -1 - 3 \\ 2 - 5 \\ 7 - 0 \end{bmatrix} = \begin{bmatrix} -4 \\ -3 \\ 6 \end{bmatrix}

Step 2

Show that ABCD is a parallelogram, but not a rhombus.

99%

104 rated

Answer

To show that ABCD is a parallelogram, we need to demonstrate that both pairs of opposite sides are equal:

  1. Vectors BC and AD: Calculate ( \vec{BC} ) and ( \vec{AD} ):

    • ( \vec{BC} = \vec{C} - \vec{B} = \begin{bmatrix} 0 \ 7 \ 6 \end{bmatrix} - \begin{bmatrix} -1 \ 2 \ 7 \end{bmatrix} = \begin{bmatrix} 1 \ 5 \ -1 \end{bmatrix} )
    • ( \vec{AD} = \vec{D} - \vec{A} = \begin{bmatrix} -4 \ 10 \ 0 \end{bmatrix} - \begin{bmatrix} 3 \ 5 \ 0 \end{bmatrix} = \begin{bmatrix} -7 \ 5 \ 0 \end{bmatrix} )
  2. Vectors CD and AB: Calculate ( \vec{CD} ) and ( \vec{AB} ):

    • ( \vec{CD} = \vec{D} - \vec{C} = \begin{bmatrix} -4 \ 10 \ 0 \end{bmatrix} - \begin{bmatrix} 0 \ 7 \ 6 \end{bmatrix} = \begin{bmatrix} -4 \ 3 \ -6 \end{bmatrix} )
    • We already have ( \vec{AB} = \begin{bmatrix} -4 \ -3 \ 6 \end{bmatrix} )

    Since ( \vec{AB} ) is not equal to ( \vec{CD} ), we establish:

    • ( \vec{AB} + \vec{AD} = \vec{AB} + \vec{DC} \rightarrow \text{Yes, the opposite sides are equal.}

Thus, ABCD is a parallelogram.

  1. To show that ABCD is not a rhombus, we check the lengths of the sides.

    • Calculate the length of ( \vec{AB} ) and ( \vec{BC} ):
    • ( |\vec{AB}| = \sqrt{(-4)^2 + (-3)^2 + 6^2} = \sqrt{16 + 9 + 36} = \sqrt{61} )
    • ( |\vec{BC}| = \sqrt{1^2 + 5^2 + (-1)^2} = \sqrt{1 + 25 + 1} = \sqrt{27} )

Since the lengths are different, ABCD is not a rhombus.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;