Photo AI

State the set of values of $x$ which satisfies the inequality $$(x - 3)(2x + 7) > 0$$ Tick (✓) one box - AQA - A-Level Maths Pure - Question 1 - 2021 - Paper 1

Question icon

Question 1

State-the-set-of-values-of-$x$-which-satisfies-the-inequality-$$(x---3)(2x-+-7)->-0$$--Tick-(✓)-one-box-AQA-A-Level Maths Pure-Question 1-2021-Paper 1.png

State the set of values of $x$ which satisfies the inequality $$(x - 3)(2x + 7) > 0$$ Tick (✓) one box. $$\{ x: -\frac{7}{2} < x < 3 \}$$ $$\{ x: x < -3 \text{ or... show full transcript

Worked Solution & Example Answer:State the set of values of $x$ which satisfies the inequality $$(x - 3)(2x + 7) > 0$$ Tick (✓) one box - AQA - A-Level Maths Pure - Question 1 - 2021 - Paper 1

Step 1

Tick one box: {$ x: x < -3 ext{ or } x > rac{7}{2} $}

96%

114 rated

Answer

To solve the inequality (x3)(2x+7)>0(x - 3)(2x + 7) > 0, we identify the critical points by setting the expression equal to zero:

  1. Set x3=0x=3x - 3 = 0 \Rightarrow x = 3
  2. Set 2x+7=02x=7x=722x + 7 = 0 \Rightarrow 2x = -7 \Rightarrow x = -\frac{7}{2}

These critical points divide the number line into intervals:

  • (,72)(-\infty, -\frac{7}{2})
  • (72,3)(-\frac{7}{2}, 3)
  • (3,+)(3, +\infty)

Next, we test a point from each interval:

  • For x<72x < -\frac{7}{2} (e.g., 4-4): (x3)(2x+7)>0(x - 3)(2x + 7) > 0 (True)
  • For 72<x<3-\frac{7}{2} < x < 3 (e.g., 00): (x3)(2x+7)<0(x - 3)(2x + 7) < 0 (False)
  • For x>3x > 3 (e.g., 44): (x3)(2x+7)>0(x - 3)(2x + 7) > 0 (True)

Thus, the solution is {x:x<72 or x>3}\{ x: x < -\frac{7}{2} \text{ or } x > 3 \} and the corresponding box should be ticked.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;