Photo AI

7 (a) Using $C_r^n = \frac{n!}{r!(n - r)!}$ show that $C_2^n = \frac{n(n - 1)}{2}$ - AQA - A-Level Maths Pure - Question 7 - 2020 - Paper 3

Question icon

Question 7

7-(a)-Using-$C_r^n-=-\frac{n!}{r!(n---r)!}$-show-that-$C_2^n-=-\frac{n(n---1)}{2}$-AQA-A-Level Maths Pure-Question 7-2020-Paper 3.png

7 (a) Using $C_r^n = \frac{n!}{r!(n - r)!}$ show that $C_2^n = \frac{n(n - 1)}{2}$. 7 (b) (i) Show that the equation $2 \times C_4^n = 51 \times C_2^n$ simplifies... show full transcript

Worked Solution & Example Answer:7 (a) Using $C_r^n = \frac{n!}{r!(n - r)!}$ show that $C_2^n = \frac{n(n - 1)}{2}$ - AQA - A-Level Maths Pure - Question 7 - 2020 - Paper 3

Step 1

Using $C_r^n = \frac{n!}{r!(n - r)!}$ show that $C_2^n = \frac{n(n - 1)}{2}$

96%

114 rated

Answer

To show that C2n=n(n1)2C_2^n = \frac{n(n - 1)}{2}, we start from the definition of combinations:

C2n=n!2!(n2)!C_2^n = \frac{n!}{2!(n - 2)!}

Substituting 2!=2×1=22! = 2 \times 1 = 2, we have:

C2n=n!2×(n2)!C_2^n = \frac{n!}{2 \times (n - 2)!}

Now, n!=n×(n1)×(n2)!n! = n \times (n - 1) \times (n - 2)!, so substituting this into the equation gives:

C2n=n×(n1)×(n2)!2×(n2)!C_2^n = \frac{n \times (n - 1) \times (n - 2)!}{2 \times (n - 2)!}

The (n2)!(n - 2)! cancels out, yielding:

C2n=n(n1)2C_2^n = \frac{n(n - 1)}{2}

Step 2

Show that the equation $2 \times C_4^n = 51 \times C_2^n$ simplifies to $n^2 - 5n - 300 = 0$

99%

104 rated

Answer

To simplify the equation, we first express both combinations:

C4n=n!4!(n4)!C_4^n = \frac{n!}{4!(n - 4)!}

Substituting 4!=244! = 24, we have:

C4n=n!24(n4)!C_4^n = \frac{n!}{24(n - 4)!}

Thus, substituting in the original equation gives:

2×n!24(n4)!=51×n(n1)22 \times \frac{n!}{24(n - 4)!} = 51 \times \frac{n(n - 1)}{2}

This simplifies to:

n!12(n4)!=51n(n1)2\frac{n!}{12(n - 4)!} = \frac{51n(n - 1)}{2}

Multiplying both sides by 12(n4)!12(n - 4)!:

n!=306n(n1)(n4)!n! = 306n(n - 1)(n - 4)!

Now, we can express n!n! as:

n!=n(n1)(n2)(n3)(n4)!n! = n(n - 1)(n - 2)(n - 3)(n - 4)!

Thus:

n(n1)(n2)(n3)=306n(n - 1)(n - 2)(n - 3) = 306

After simplifying the resulting polynomial, we find:

n25n300=0n^2 - 5n - 300 = 0

Step 3

Hence, solve the equation $2 \times C_4^n = 51 \times C_2^n$

96%

101 rated

Answer

Now, we can solve the equation:

n25n300=0n^2 - 5n - 300 = 0

We use the quadratic formula:

n=b±b24ac2an = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1,b=5,c=300a = 1, b = -5, c = -300. Plugging these values in gives:

n=5±(5)24×1×(300)2×1n = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 1 \times (-300)}}{2 \times 1}

=5±25+12002= \frac{5 \pm \sqrt{25 + 1200}}{2}

=5±12252= \frac{5 \pm \sqrt{1225}}{2}

Since must be a positive integer, we consider:

n=5+352=20n = \frac{5 + 35}{2} = 20

Thus, the solution is:

n=20n = 20

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;