To expand
(2x−3)10,
we use the Binomial Theorem, which states:
(a+b)n=∑k=0n(kn)an−kbk
where in our case, a=2x, b=−3, and n=10. So, the terms for k=0,1,2 will be:
- For k=0:
(010)(2x)10(−3)0=1⋅(2x)10⋅1=1024x10.
- For k=1:
(110)(2x)9(−3)1=10⋅(2x)9⋅(−3)=−30⋅29x9=−15360x9.
- For k=2:
(210)(2x)8(−3)2=45⋅(2x)8⋅9=405⋅28x8=103680x8.
Combining these, we obtain:
1024x10−15360x9+103680x8.
Thus, we have: p=−15360 and q=103680.