Photo AI

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) 8 (b) Solve the equation P(n) = 1.25 \times 10^8 - AQA - A-Level Maths Pure - Question 8 - 2019 - Paper 1

Question icon

Question 8

P(n)-=-\sum_{k=0}^{n}-k^3---\sum_{k=0}^{n-1}-k^3-\text{-where-}-n-\text{-is-a-positive-integer.}--8-(a)-Find-P(3)-and-P(10)--8-(b)-Solve-the-equation-P(n)-=-1.25-\times-10^8-AQA-A-Level Maths Pure-Question 8-2019-Paper 1.png

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) 8 (b) Solve the equation P(n) = 1.25 \ti... show full transcript

Worked Solution & Example Answer:P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) 8 (b) Solve the equation P(n) = 1.25 \times 10^8 - AQA - A-Level Maths Pure - Question 8 - 2019 - Paper 1

Step 1

Find P(3)

96%

114 rated

Answer

To find P(3), we calculate:

P(3)=k=03k3k=02k3P(3) = \sum_{k=0}^{3} k^3 - \sum_{k=0}^{2} k^3

Calculating each sum:

  1. (\sum_{k=0}^{3} k^3 = 0^3 + 1^3 + 2^3 + 3^3 = 0 + 1 + 8 + 27 = 36)
  2. (\sum_{k=0}^{2} k^3 = 0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9)

Thus, we have:

P(3)=369=27.P(3) = 36 - 9 = 27.

Step 2

Find P(10)

99%

104 rated

Answer

To find P(10), we calculate:

P(10)=k=010k3k=09k3P(10) = \sum_{k=0}^{10} k^3 - \sum_{k=0}^{9} k^3

Calculating each sum:

  1. Using the formula for the sum of cubes: (\left( \frac{n(n + 1)}{2} \right)^2), for (n = 10):
    • (\sum_{k=0}^{10} k^3 = \left( \frac{10 \times 11}{2} \right)^2 = 55^2 = 3025)
  2. For (n = 9):
    • (\sum_{k=0}^{9} k^3 = \left( \frac{9 \times 10}{2} \right)^2 = 45^2 = 2025)

Thus, we have:

P(10)=30252025=1000.P(10) = 3025 - 2025 = 1000.

Step 3

Solve the equation P(n) = 1.25 \times 10^8

96%

101 rated

Answer

To solve the equation, we set:

P(n)=n4 (since P(n)=(n(n+1)2)2)n4=1.25×108P(n) = n^4\text{ (since } P(n) = (\frac{n(n + 1)}{2})^2\text{)} \Rightarrow n^4 = 1.25 \times 10^8

Taking the fourth root:

n=1.25×1084=1.254×102n = \sqrt[4]{1.25 \times 10^8} = \sqrt[4]{1.25} \times 10^2

Calculating further:

  1. (\sqrt[4]{1.25} \approx 1.118)
  2. Therefore, (n \approx 1.118 \times 100 = 111.8)

Given that (n) must be a positive integer, we round this to: n = 500.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;