Photo AI
Question 12
A curve C has equation $$x^3 \sin y + \cos y = Ax$$ where A is a constant. C passes through the point P (\sqrt{3}, \frac{\pi}{6}) 12 (a) Show that A = 2 12 (b) ... show full transcript
Step 1
Answer
To find the value of A, we start by substituting the coordinates of point P (\sqrt{3}, \frac{\pi}{6}) into the equation of the curve.
Substitute x = \sqrt{3} and y = \frac{\pi}{6} into the equation:
This gives:
Calculate the sine and cosine values:
Substitute these values back into the equation:
Calculate the left-hand side:
Simplifying gives:
Dividing both sides by (\sqrt{3}) leads to: .
Step 2
Answer
To show the required differentiation, we start with the equation:
Differentiate both sides with respect to x using implicit differentiation:
This gives:
Rearranging for (\frac{dy}{dx}) we have:
Isolating (\frac{dy}{dx}):
This confirms the required expression.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths: Pure - AQA
1.2 Proof by Contradiction
Maths: Pure - AQA
2.1 Laws of Indices & Surds
Maths: Pure - AQA
2.2 Quadratics
Maths: Pure - AQA
2.3 Simultaneous Equations
Maths: Pure - AQA
2.4 Inequalities
Maths: Pure - AQA
2.5 Polynomials
Maths: Pure - AQA
2.6 Rational Expressions
Maths: Pure - AQA
2.7 Graphs of Functions
Maths: Pure - AQA
2.8 Functions
Maths: Pure - AQA
2.9 Transformations of Functions
Maths: Pure - AQA
2.10 Combinations of Transformations
Maths: Pure - AQA
2.11 Partial Fractions
Maths: Pure - AQA
2.12 Modelling with Functions
Maths: Pure - AQA
2.13 Further Modelling with Functions
Maths: Pure - AQA
3.1 Equation of a Straight Line
Maths: Pure - AQA
3.2 Circles
Maths: Pure - AQA
4.1 Binomial Expansion
Maths: Pure - AQA
4.2 General Binomial Expansion
Maths: Pure - AQA
4.3 Arithmetic Sequences & Series
Maths: Pure - AQA
4.4 Geometric Sequences & Series
Maths: Pure - AQA
4.5 Sequences & Series
Maths: Pure - AQA
4.6 Modelling with Sequences & Series
Maths: Pure - AQA
5.1 Basic Trigonometry
Maths: Pure - AQA
5.2 Trigonometric Functions
Maths: Pure - AQA
5.3 Trigonometric Equations
Maths: Pure - AQA
5.4 Radian Measure
Maths: Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths: Pure - AQA
5.6 Compound & Double Angle Formulae
Maths: Pure - AQA
5.7 Further Trigonometric Equations
Maths: Pure - AQA
5.8 Trigonometric Proof
Maths: Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths: Pure - AQA
6.1 Exponential & Logarithms
Maths: Pure - AQA
6.2 Laws of Logarithms
Maths: Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths: Pure - AQA
7.1 Differentiation
Maths: Pure - AQA
7.2 Applications of Differentiation
Maths: Pure - AQA
7.3 Further Differentiation
Maths: Pure - AQA
7.4 Further Applications of Differentiation
Maths: Pure - AQA
7.5 Implicit Differentiation
Maths: Pure - AQA
8.1 Integration
Maths: Pure - AQA
8.2 Further Integration
Maths: Pure - AQA
8.3 Differential Equations
Maths: Pure - AQA
9.1 Parametric Equations
Maths: Pure - AQA
10.1 Solving Equations
Maths: Pure - AQA
10.2 Modelling involving Numerical Methods
Maths: Pure - AQA
11.1 Vectors in 2 Dimensions
Maths: Pure - AQA
11.2 Vectors in 3 Dimensions
Maths: Pure - AQA