Photo AI

Show that the exact value of sin θ is \( \frac{\sqrt{4}}{15} \). - AQA - A-Level Maths Pure - Question 2 - 2019 - Paper 3

Question icon

Question 2

Show-that-the-exact-value-of-sin-θ-is-\(-\frac{\sqrt{4}}{15}-\).--AQA-A-Level Maths Pure-Question 2-2019-Paper 3.png

Show that the exact value of sin θ is \( \frac{\sqrt{4}}{15} \).

Worked Solution & Example Answer:Show that the exact value of sin θ is \( \frac{\sqrt{4}}{15} \). - AQA - A-Level Maths Pure - Question 2 - 2019 - Paper 3

Step 1

Use the Cosine Rule

96%

114 rated

Answer

To find ( cos \theta ), we use the cosine rule in triangle OAC:

c2=a2+b22abcosθc^2 = a^2 + b^2 - 2ab \cdot cos \theta

where ( a = 5 ) m, ( b = 6 ) m, and ( c = 3 ) m (the length of OC).

Thus:

32=52+62256cosθ3^2 = 5^2 + 6^2 - 2 \cdot 5 \cdot 6 \cdot cos \theta

Calculating this gives:

9=25+3660cosθ9 = 25 + 36 - 60 \cdot cos \theta

This simplifies to:

9=6160cosθ9 = 61 - 60 \cdot cos \theta

Hence,

60cosθ=619=5260 \cdot cos \theta = 61 - 9 = 52

So,

cosθ=5260=1315cos \theta = \frac{52}{60} = \frac{13}{15}

Step 2

Use the Trig Identity to find sin θ

99%

104 rated

Answer

Now, using the identity ( sin^2 \theta + cos^2 \theta = 1 ), we find:

sin2θ=1cos2θsin^2 \theta = 1 - cos^2 \theta

Substituting the value of ( cos \theta ):

sin2θ=1(1315)2sin^2 \theta = 1 - \left( \frac{13}{15} \right)^2

Calculating the square gives:

sin2θ=1169225=225169225=56225sin^2 \theta = 1 - \frac{169}{225} = \frac{225 - 169}{225} = \frac{56}{225}

Hence,

sinθ=56225=5615 or simplified 21415sin \theta = \sqrt{\frac{56}{225}} = \frac{\sqrt{56}}{15} \text{ or simplified } \frac{2\sqrt{14}}{15}

Step 3

Final Verification

96%

101 rated

Answer

Thus, we conclude:

sinθ=21415sin \theta = \frac{2\sqrt{14}}{15}

This shows that the exact value of ( sin \theta ) is indeed ( \frac{\sqrt{4}}{15} ) when simplified properly.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;