Photo AI

Let $f(x) = ext{sin} \, x$ - AQA - A-Level Maths Pure - Question 17 - 2017 - Paper 1

Question icon

Question 17

Let-$f(x)-=--ext{sin}-\,-x$-AQA-A-Level Maths Pure-Question 17-2017-Paper 1.png

Let $f(x) = ext{sin} \, x$. Using differentiation from first principles find the exact value of \( f \left( \frac{\pi}{6} \right) \). Fully justify your answer.

Worked Solution & Example Answer:Let $f(x) = ext{sin} \, x$ - AQA - A-Level Maths Pure - Question 17 - 2017 - Paper 1

Step 1

Translate $f \left( \frac{\pi}{6} + h \right)$

96%

114 rated

Answer

To find the derivative from first principles, we start by expressing:

f(π6)=limh0f(π6+h)f(π6)hf' \left( \frac{\pi}{6} \right) = \lim_{h \to 0} \frac{f \left( \frac{\pi}{6} + h \right) - f \left( \frac{\pi}{6} \right)}{h}

This becomes:

=limh0sin(π6+h)sin(π6)h= \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{6} + h \right) - \sin \left( \frac{\pi}{6} \right)}{h}

Step 2

Use the sin addition formula

99%

104 rated

Answer

Using the identity for sine of a sum, we have:

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

Thus, we can express:

sin(π6+h)=sin(π6)cosh+cos(π6)sinh\sin \left( \frac{\pi}{6} + h \right) = \sin \left( \frac{\pi}{6} \right) \cos h + \cos \left( \frac{\pi}{6} \right) \sin h

This allows us to simplify:

=limh0sin(π6)cosh+cos(π6)sinhsin(π6)h= \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{6} \right) \cos h + \cos \left( \frac{\pi}{6} \right) \sin h - \sin \left( \frac{\pi}{6} \right)}{h}

Step 3

Obtain the two-term expression

96%

101 rated

Answer

Rearranging further, we have:

=limh0sin(π6)(cosh1)+cos(π6)sinhh= \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{6} \right) (\cos h - 1) + \cos \left( \frac{\pi}{6} \right) \sin h}{h}

This can be separated into two limits:

=limh0(sin(π6)cosh1h+cos(π6)sinhh)= \lim_{h \to 0} \left( \sin \left( \frac{\pi}{6} \right) \frac{\cos h - 1}{h} + \cos \left( \frac{\pi}{6} \right) \frac{\sin h}{h} \right)

Step 4

Analyze the limits as $h \to 0$

98%

120 rated

Answer

Using the known limits:

  1. ( \lim_{h \to 0} \frac{\sin h}{h} = 1 )
  2. ( \lim_{h \to 0} \frac{\cos h - 1}{h} = 0 )

Thus, we have:

=sin(π6)0+cos(π6)1= \sin \left( \frac{\pi}{6} \right) \cdot 0 + \cos \left( \frac{\pi}{6} \right) \cdot 1

Knowing that ( \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} ) and ( \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} ), we get:

=32= \frac{\sqrt{3}}{2}

Step 5

Conclusion

97%

117 rated

Answer

Therefore, the exact value is:

ight) = \frac{\sqrt{3}}{2}$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;