Photo AI
Question 15
Given that y = cosec θ 15 (a) (i) Express y in terms of sin θ. 15 (a) (ii) Hence, prove that dy / dθ = -cosec θ cot θ 15 (a) (iii) Show that √(y² - 1) / y = c... show full transcript
Step 1
Step 2
Answer
To differentiate y with respect to θ, we use the chain or quotient rule:
Starting with:
y = rac{1}{ ext{sin} θ},
dy / dθ = -rac{ ext{cos} θ}{ ext{sin}^2 θ}.
Utilizing the identity:
cosec θ = rac{1}{ ext{sin} θ} ext{ and } cot θ = rac{ ext{cos} θ}{ ext{sin} θ},
we rewrite:
dy / dθ = - ext{cosec} θ ext{cot} θ.
Step 3
Answer
Starting from the Pythagorean identity,
y = ext{cosec} θ = rac{1}{ ext{sin} θ},
we know that:
y² = ext{cosec}² θ = rac{1}{ ext{sin}² θ}.
Thus, y² - 1 = ext{cosec}² θ - 1 = rac{1 - ext{sin}² θ}{ ext{sin}² θ} = rac{ ext{cos}² θ}{ ext{sin}² θ}.
Now substituting back,
rac{ ext{√}(y² - 1)}{y} = rac{ ext{√}rac{ ext{cos}² θ}{ ext{sin}² θ}}{rac{1}{ ext{sin} θ}} = rac{ ext{cos} θ}{ ext{sin} θ} = ext{cos} θ.
Step 4
Answer
Substituting x = 2 cosec u:
dx = -2 cosec u cot u du.
This leads us to the integral:
∫ (1 / (x² √(2² - 4))) dx = ∫ (1 / (4 ext{cosec}² u √(4sin² u - 4))) (-2 cosec u cot u) du = - ∫ (2 ext{cot} u csc u) du.
This results in an expression that simplifies to: k sin u du, where k can be found by comparing coefficients.
Step 5
Answer
Continuing from the previous result:
Using the derived integral and a proper substitution, we integrate:
the original integral leads us to:
∫ (1 / (√(2² - 4))) dx = rac{1}{4} ext{sin} u + c.
Upon substituting back, we find:
∫ (1 / (√(2² - 4))) dx = rac{√(x² - 4)}{4} + c, proving the statement.
Report Improved Results
Recommend to friends
Students Supported
Questions answered