Photo AI

12 (a) Show that the equation 2 cot^2 x + 2 cosec^2 x = 1 + 4 cosec x can be written in the form a cosec^2 x + b cosec x + c = 0 12 (b) Hence, given x is obtuse and 2 cot^2 x + 2 cosec^2 x = 1 + 4 cosec x find the exact value of tan x - AQA - A-Level Maths Pure - Question 12 - 2019 - Paper 1

Question icon

Question 12

12-(a)-Show-that-the-equation--2-cot^2-x-+-2-cosec^2-x-=-1-+-4-cosec-x--can-be-written-in-the-form--a-cosec^2-x-+-b-cosec-x-+-c-=-0--12-(b)-Hence,-given-x-is-obtuse-and--2-cot^2-x-+-2-cosec^2-x-=-1-+-4-cosec-x--find-the-exact-value-of-tan-x-AQA-A-Level Maths Pure-Question 12-2019-Paper 1.png

12 (a) Show that the equation 2 cot^2 x + 2 cosec^2 x = 1 + 4 cosec x can be written in the form a cosec^2 x + b cosec x + c = 0 12 (b) Hence, given x is obtuse ... show full transcript

Worked Solution & Example Answer:12 (a) Show that the equation 2 cot^2 x + 2 cosec^2 x = 1 + 4 cosec x can be written in the form a cosec^2 x + b cosec x + c = 0 12 (b) Hence, given x is obtuse and 2 cot^2 x + 2 cosec^2 x = 1 + 4 cosec x find the exact value of tan x - AQA - A-Level Maths Pure - Question 12 - 2019 - Paper 1

Step 1

Show that the equation can be written in the form a cosec^2 x + b cosec x + c = 0

96%

114 rated

Answer

To show this, start from the equation:

2cot2x+2csc2x=1+4cscx2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x

Using the identity (\cot^2 x = \csc^2 x - 1), substitute for (\cot^2 x):

2(csc2x1)+2csc2x=1+4cscx2 (\csc^2 x - 1) + 2 \csc^2 x = 1 + 4 \csc x

This simplifies to:

2csc2x2+2csc2x=1+4cscx2 \csc^2 x - 2 + 2 \csc^2 x = 1 + 4 \csc x

Combining like terms gives:

4csc2x2=1+4cscx4 \csc^2 x - 2 = 1 + 4 \csc x

Rearranging this results in:

4csc2x4cscx3=04 \csc^2 x - 4 \csc x - 3 = 0

This can be rewritten as:

a=4,b=4,c=3a = 4, \quad b = -4, \quad c = -3

Thus, it is in the required form of (a \csc^2 x + b \csc x + c = 0).

Step 2

Find the exact value of tan x.

99%

104 rated

Answer

Given that (x) is obtuse and

2cot2x+2csc2x=1+4cscx2 \cot^2 x + 2 \csc^2 x = 1 + 4 \csc x,

we proceed to find (\csc x):

Using the equation derived in part (a), we set:

4csc2x4cscx3=04 \csc^2 x - 4 \csc x - 3 = 0

Applying the quadratic formula:

cscx=b±b24ac2a=4±(4)244(3)24\csc x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4}

Calculate the discriminant:

16+48=64=8\sqrt{16 + 48} = \sqrt{64} = 8

Hence,

cscx=4±88\csc x = \frac{4 \pm 8}{8}

This gives two potential solutions:

  1. (\csc x = \frac{12}{8} = \frac{3}{2})
  2. (\csc x = \frac{-4}{8} = -\frac{1}{2} \text{ (reject as (|csc x| \geq 1|)})

Since we accept (\csc x = \frac{3}{2}), we then find (\sin x):

sinx=23\sin x = \frac{2}{3}

Use the identity for tan:

tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

Calculating (\cos x):

Since in triangle terms for obtuse angle,

cos2x=1sin2x=1(23)2=149=59\cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9}

Thus,

cosx=59=53\cos x = -\sqrt{\frac{5}{9}} = -\frac{\sqrt{5}}{3}

Finally, we find:

tanx=sinxcosx=2353=25\tan x = \frac{\sin x}{\cos x} = \frac{\frac{2}{3}}{-\frac{\sqrt{5}}{3}} = -\frac{2}{\sqrt{5}}

Therefore, the exact value of (\tan x) is:

tanx=25\tan x = -\frac{2}{\sqrt{5}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;