5 (a) Sketch the graph of
$y = ext{sin } 2x$
for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } ext{ }orall x$
$0^{ ext{}} ext{ } ext{ } ext{ } ext{ } \leq x \leq 360^{ ext{}} ext{ }$
[2 marks]
5 (b) The equation
5 (b) The equation
$ ext{sin } 2x = A$
has exactly two solutions for $0^{ ext{}} \leq x \leq 360^{ ext{}}$
State the possible values of $A$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 3
Question 5
5 (a) Sketch the graph of
$y = ext{sin } 2x$
for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ ... show full transcript
Worked Solution & Example Answer:5 (a) Sketch the graph of
$y = ext{sin } 2x$
for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } ext{ }orall x$
$0^{ ext{}} ext{ } ext{ } ext{ } ext{ } \leq x \leq 360^{ ext{}} ext{ }$
[2 marks]
5 (b) The equation
5 (b) The equation
$ ext{sin } 2x = A$
has exactly two solutions for $0^{ ext{}} \leq x \leq 360^{ ext{}}$
State the possible values of $A$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 3
Step 1
Sketch the graph of $y = ext{sin } 2x$ for $0^{ ext{}} \leq x \leq 360^{ ext{}}$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The function y=extsin2x oscillates between -1 and 1.
Since the amplitude of the sine function is 1, there will be peaks at these points:
At x=0ext, y=0.
At x=90ext, y=1.
At x=180ext, y=0.
At x=270ext, y=−1.
At x=360ext, y=0.
The graph completes one full period between 0ext and 180ext, and another between 180ext and 360ext.
The sketch should reflect these points, showing a smooth wave pattern starting and ending at the origin with two complete oscillations within the defined interval.
Step 2
State the possible values of $A$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The equation extsin2x=A will have two solutions when the value of A lies within the range of the sine function, which oscillates between -1 and 1. Thus, the possible values of A are: