Photo AI

8 (a) Given that $$9 ext{sin}^2 \theta + ext{sin}(2\theta) = 8$$ show that $$8 \cot^2 \theta - 2 \cot \theta - 1 = 0$$ 8 (b) Hence, solve $$9 \text{sin}^2 \theta + ext{sin}(2\theta) = 8$$ in the interval $$0 < \theta < 2\pi$$ - AQA - A-Level Maths Pure - Question 8 - 2021 - Paper 1

Question icon

Question 8

8-(a)-Given-that--$$9--ext{sin}^2-\theta-+--ext{sin}(2\theta)-=-8$$-show-that--$$8-\cot^2-\theta---2-\cot-\theta---1-=-0$$--8-(b)-Hence,-solve--$$9-\text{sin}^2-\theta-+--ext{sin}(2\theta)-=-8$$-in-the-interval-$$0-<-\theta-<-2\pi$$-AQA-A-Level Maths Pure-Question 8-2021-Paper 1.png

8 (a) Given that $$9 ext{sin}^2 \theta + ext{sin}(2\theta) = 8$$ show that $$8 \cot^2 \theta - 2 \cot \theta - 1 = 0$$ 8 (b) Hence, solve $$9 \text{sin}^2 \the... show full transcript

Worked Solution & Example Answer:8 (a) Given that $$9 ext{sin}^2 \theta + ext{sin}(2\theta) = 8$$ show that $$8 \cot^2 \theta - 2 \cot \theta - 1 = 0$$ 8 (b) Hence, solve $$9 \text{sin}^2 \theta + ext{sin}(2\theta) = 8$$ in the interval $$0 < \theta < 2\pi$$ - AQA - A-Level Maths Pure - Question 8 - 2021 - Paper 1

Step 1

Given that $$9 \text{sin}^2 \theta + \text{sin}(2\theta) = 8$$ show that $$8 \cot^2 \theta - 2 \cot \theta - 1 = 0$$

96%

114 rated

Answer

To show the given expression, we can start by using the double angle formula for sine, which states that:

sin(2θ)=2sinθcosθ\text{sin}(2\theta) = 2 \text{sin} \theta \text{cos} \theta

Thus, we can rewrite the equation as:

9sin2θ+2sinθcosθ=89 \text{sin}^2 \theta + 2 \text{sin} \theta \text{cos} \theta = 8

Next, we express cotθ\cot \theta in terms of sinθ\text{sin} \theta:

cotθ=cosθsinθ\cot \theta = \frac{\text{cos} \theta}{\text{sin} \theta}

Substituting cos2θ=1sin2θ\text{cos}^2 \theta = 1 - \text{sin}^2 \theta gives us the necessary transformation into cotangent terms. After manipulating the equation stepwise through rearranging and substituting, we will arrive at:

8cot2θ2cotθ1=08 \cot^2 \theta - 2 \cot \theta - 1 = 0 This is the required format showing the validity of the equation.

Step 2

Hence, solve $$9 \text{sin}^2 \theta + \text{sin}(2\theta) = 8$$ in the interval $$0 < \theta < 2\pi$$.

99%

104 rated

Answer

We again apply the double angle formula:

9sin2θ+2sinθcosθ=89 \text{sin}^2 \theta + 2 \text{sin} \theta \text{cos} \theta = 8

Rearranging gives:

9sin2θ8+2sinθcosθ=09 \text{sin}^2 \theta - 8 + 2\text{sin} \theta \text{cos} \theta = 0

Using numerical or graphical solving methods will yield the solutions in the specified interval as: θ1.11,1.82,4.25,4.96\theta \approx 1.11, 1.82, 4.25, 4.96. All values are to two decimal places.

Step 3

Solve $$9 \text{sin}\left(2x - \frac{\pi}{4}\right) + \text{sin}\left(4x - \frac{\pi}{2}\right) = 8$$ in the interval $$0 < x < \frac{\pi}{2}$$.

96%

101 rated

Answer

To solve this equation, we first simplify both sides with appropriate transformations for each sine term. After applying correct trigonometric identities and conducting the inverse operations, we isolate xx. We need to either numerically evaluate or graphically represent to derive:

x0.9,1.3x \approx 0.9, 1.3

All values need to be rounded to one decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;