Photo AI

Prove the identity $$\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$$ - AQA - A-Level Maths Pure - Question 13 - 2017 - Paper 1

Question icon

Question 13

Prove-the-identity---$$\cot^2-\theta---\cos^2-\theta-=-\cot^2-\theta-\cos^2-\theta$$-AQA-A-Level Maths Pure-Question 13-2017-Paper 1.png

Prove the identity $$\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$$

Worked Solution & Example Answer:Prove the identity $$\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$$ - AQA - A-Level Maths Pure - Question 13 - 2017 - Paper 1

Step 1

Start with Left-Hand Side (LHS)

96%

114 rated

Answer

We start by writing the left-hand side of the equation:

cot2θcos2θ\cot^2 \theta - \cos^2 \theta

We know that: cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta} Thus, we have:

cot2θ=cos2θsin2θ\cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta}

Substituting this into the left-hand side gives:

cos2θsin2θcos2θ\frac{\cos^2 \theta}{\sin^2 \theta} - \cos^2 \theta

Step 2

Simplify the Expression

99%

104 rated

Answer

Now, we need a common denominator to combine the terms:

LHS=cos2θcos2θsin2θsin2θLHS = \frac{\cos^2 \theta - \cos^2 \theta \sin^2 \theta}{\sin^2 \theta}

Factoring out (\cos^2 \theta) from the numerator, we get:

LHS=cos2θ(1sin2θ)sin2θLHS = \frac{\cos^2 \theta (1 - \sin^2 \theta)}{\sin^2 \theta}

Using the Pythagorean identity, we know that:

1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta

Thus, we can substitute this back into our equation:

Step 3

Conclusion with Right-Hand Side (RHS)

96%

101 rated

Answer

LHS=cos2θcos2θsin2θ=cos4θsin2θLHS = \frac{\cos^2 \theta \cos^2 \theta}{\sin^2 \theta} = \frac{\cos^4 \theta}{\sin^2 \theta}

We can express 1sin2θ\frac{1}{\sin^2 \theta} as csc2θ\csc^2 \theta:

LHS=cos4θcsc2θLHS = \cos^4 \theta \csc^2 \theta

And since: cot2θ=cos2θsin2θ=cot2θcos2θ\cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta \cos^2 \theta

This matches the right-hand side, confirming the identity.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;