Photo AI

Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ [3 marks] Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ [6 marks] - AQA - A-Level Maths Pure - Question 8 - 2018 - Paper 3

Question icon

Question 8

Prove-the-identity--$$\frac{\sin-2x}{1-+-\tan^2-x}-=-2-\sin-x-\cos^3-x$$--[3-marks]--Hence-find--$$\int-\frac{4-\sin-4\theta}{1-+-\tan^2-2\theta}-d\theta$$--[6-marks]-AQA-A-Level Maths Pure-Question 8-2018-Paper 3.png

Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ [3 marks] Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ [6 marks... show full transcript

Worked Solution & Example Answer:Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ [3 marks] Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ [6 marks] - AQA - A-Level Maths Pure - Question 8 - 2018 - Paper 3

Step 1

Prove the identity

96%

114 rated

Answer

To prove the identity sin2x1+tan2x=2sinxcos3x\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x, we start with the left-hand side (LHS):

LHS=sin2x1+tan2xLHS = \frac{\sin 2x}{1 + \tan^2 x}

Using the Pythagorean identity, we know that:

1+tan2x=sec2x1 + \tan^2 x = \sec^2 x

Thus, substituting this into our equation gives us:

LHS=sin2xcos2xLHS = \sin 2x \cdot \cos^2 x

Next, we can express sin2x\sin 2x using the double angle formula:

sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x

Now substitute for sin2x\sin 2x:

LHS=(2sinxcosx)cos2xLHS = (2 \sin x \cos x) \cdot \cos^2 x

Combining the terms yields:

LHS=2sinxcos3xLHS = 2 \sin x \cos^3 x

Thus, we have shown that:

LHS=RHSLHS = RHS

Therefore, the identity is proved.

Step 2

Hence find

99%

104 rated

Answer

To find the integral:

4sin4θ1+tan22θdθ\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta,

we first rewrite the integral using the identity established:

Here, we know:

1+tan22θ=sec22θ1 + \tan^2 2\theta = \sec^2 2\theta

Thus,

4sin4θsec22θdθ=4sin4θcos22θdθ\int \frac{4 \sin 4\theta}{\sec^2 2\theta} d\theta = \int 4 \sin 4\theta \cos^2 2\theta \, d\theta

Next, we can express (\sin 4\theta) in terms of (\sin 2\theta):

sin4θ=2sin2θcos2θ\sin 4\theta = 2 \sin 2\theta \cos 2\theta

Substituting this gives:

4(2sin2θcos2θ)cos22θdθ\int 4 (2 \sin 2\theta \cos 2\theta) \cos^2 2\theta \, d\theta

Rearranging and simplifying leads to:

8sin2θcos32θdθ\int 8 \sin 2\theta \cos^3 2\theta \, d\theta

Now we can use the substitution method:

Let (u = \sin 2\theta) so that (du = 2\cos 2\theta , d\theta$$

We obtain:

4ucos22θdu\int 4u \cos^2 2\theta \, du

Now substituting and solving yields:

Finally, the specific integration leads to a result of:

=4cos22θsin2θ+C= -4 \cos^2 2\theta \cdot \sin 2\theta + C

This is our final answer.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;