Photo AI

f(x) = sin.x Using differentiation from first principles find the exact value of $ rac{ ext{ } rac{ ho}{6}}{6}$ Fully justify your answer. - AQA - A-Level Maths Pure - Question 17 - 2017 - Paper 1

Question icon

Question 17

f(x)-=-sin.x--Using-differentiation-from-first-principles-find-the-exact-value-of-$-rac{-ext{-}-rac{-ho}{6}}{6}$--Fully-justify-your-answer.-AQA-A-Level Maths Pure-Question 17-2017-Paper 1.png

f(x) = sin.x Using differentiation from first principles find the exact value of $ rac{ ext{ } rac{ ho}{6}}{6}$ Fully justify your answer.

Worked Solution & Example Answer:f(x) = sin.x Using differentiation from first principles find the exact value of $ rac{ ext{ } rac{ ho}{6}}{6}$ Fully justify your answer. - AQA - A-Level Maths Pure - Question 17 - 2017 - Paper 1

Step 1

Using differentiation from first principles

96%

114 rated

Answer

To find the derivative of the function f(x)=extsin(x)f(x) = ext{sin}(x) using the first principles, we start with the limit definition:

f(x)=extlimho0f(x+h)f(x)hf'(x) = ext{lim}_{h o 0} \frac{f(x+h) - f(x)}{h}

Substituting in our function, we get:

ho}{6}}{6}\right) = \text{lim}_{h \to 0} \frac{\text{sin}\left(\frac{\pi}{6} + h\right) - \text{sin}\left(\frac{\pi}{6}\right)}{h}$$

Step 2

Using the sine addition formula

99%

104 rated

Answer

Next, we apply the sine addition formula, which states that:

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\text{sin}(A + B) = \text{sin}(A)\text{cos}(B) + \text{cos}(A)\text{sin}(B)

We can rewrite the expression:

f(π6)=limh0sin(π6)cos(h)+cos(π6)sin(h)sin(π6)hf'\left(\frac{\pi}{6}\right) = \text{lim}_{h \to 0} \frac{\text{sin}\left(\frac{\pi}{6}\right)\text{cos}(h) + \text{cos}\left(\frac{\pi}{6}\right)\text{sin}(h) - \text{sin}\left(\frac{\pi}{6}\right)}{h}

Step 3

Simplifying the expression

96%

101 rated

Answer

This simplifies to:

f(π6)=limh0sin(π6)cos(h)sin(π6)+cos(π6)sin(h)hf'\left(\frac{\pi}{6}\right) = \text{lim}_{h \to 0} \frac{\text{sin}\left(\frac{\pi}{6}\right)\text{cos}(h) - \text{sin}\left(\frac{\pi}{6}\right) + \text{cos}\left(\frac{\pi}{6}\right)\text{sin}(h)}{h}

Factoring out sin(π6)\text{sin}\left(\frac{\pi}{6}\right) gives us:

=sin(π6)cos(h)1h+cos(π6)sin(h)h= \text{sin}\left(\frac{\pi}{6}\right)\frac{\text{cos}(h) - 1}{h} + \text{cos}\left(\frac{\pi}{6}\right)\frac{\text{sin}(h)}{h}

Step 4

Taking the limit as h approaches 0

98%

120 rated

Answer

From the limit properties, we know:

  • limh0sin(h)h=1\lim_{h \to 0} \frac{\text{sin}(h)}{h} = 1
  • limh0cos(h)1h=0\lim_{h \to 0} \frac{\text{cos}(h) - 1}{h} = 0

Thus, substituting back in gives:

=sin(π6)0+cos(π6)1=cos(π6)= \text{sin}\left(\frac{\pi}{6}\right) \cdot 0 + \text{cos}\left(\frac{\pi}{6}\right)\cdot 1 = \text{cos}\left(\frac{\pi}{6}\right)

Step 5

Evaluating cos(π/6)

97%

117 rated

Answer

We know that:

cos(π6)=32\text{cos}\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

Thus, the exact value of f(π6)f'\left(\frac{\pi}{6}\right) is:

f(π6)=32f'\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;